/**
|
* @license
|
* Copyright 2017 Google Inc. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
|
import {GPGPUContext} from './gpgpu_context';
|
import {GPGPUProgram} from './gpgpu_math';
|
|
export class MultinomialProgram implements GPGPUProgram {
|
variableNames = ['probs'];
|
outputShape: number[];
|
userCode: string;
|
|
// Caching uniform location for speed.
|
seedLoc: WebGLUniformLocation;
|
|
constructor(batchSize: number, numOutcomes: number, numSamples: number) {
|
this.outputShape = [batchSize, numSamples];
|
|
this.userCode = `
|
uniform float seed;
|
|
void main() {
|
ivec2 coords = getOutputCoords();
|
int batch = coords[0];
|
|
float r = random(seed);
|
float cdf = 0.0;
|
|
for (int i = 0; i < ${numOutcomes - 1}; i++) {
|
cdf += getProbs(batch, i);
|
|
if (r < cdf) {
|
setOutput(float(i));
|
return;
|
}
|
}
|
|
// If no other event happened, last event happened.
|
setOutput(float(${numOutcomes - 1}));
|
}
|
`;
|
}
|
|
getCustomSetupFunc(seed: number) {
|
return (gpgpu: GPGPUContext, webGLProgram: WebGLProgram) => {
|
if (this.seedLoc == null) {
|
this.seedLoc = gpgpu.getUniformLocation(webGLProgram, 'seed');
|
}
|
gpgpu.gl.uniform1f(this.seedLoc, seed);
|
};
|
}
|
}
|