/**
|
* @license
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
|
/**
|
* IOHandlers that pass through the in-memory ModelArtifacts format.
|
*/
|
|
import {IOHandler, ModelArtifacts, SaveResult, TrainingConfig, WeightsManifestEntry} from './types';
|
|
class PassthroughLoader implements IOHandler {
|
constructor(private readonly modelArtifacts?: ModelArtifacts) {}
|
|
async load(): Promise<ModelArtifacts> {
|
return this.modelArtifacts;
|
}
|
}
|
|
class PassthroughSaver implements IOHandler {
|
constructor(
|
private readonly saveHandler:
|
(artifacts: ModelArtifacts) => Promise<SaveResult>) {}
|
|
async save(modelArtifacts: ModelArtifacts) {
|
return this.saveHandler(modelArtifacts);
|
}
|
}
|
|
/**
|
* Creates an IOHandler that loads model artifacts from memory.
|
*
|
* When used in conjunction with `tf.loadLayersModel`, an instance of
|
* `tf.LayersModel` (Keras-style) can be constructed from the loaded artifacts.
|
*
|
* ```js
|
* const model = await tf.loadLayersModel(tf.io.fromMemory(
|
* modelTopology, weightSpecs, weightData));
|
* ```
|
*
|
* @param modelArtifacts a object containing model topology (i.e., parsed from
|
* the JSON format).
|
* @param weightSpecs An array of `WeightsManifestEntry` objects describing the
|
* names, shapes, types, and quantization of the weight data.
|
* @param weightData A single `ArrayBuffer` containing the weight data,
|
* concatenated in the order described by the weightSpecs.
|
* @param trainingConfig Model training configuration. Optional.
|
*
|
* @returns A passthrough `IOHandler` that simply loads the provided data.
|
*/
|
export function fromMemory(
|
modelArtifacts: {}|ModelArtifacts, weightSpecs?: WeightsManifestEntry[],
|
weightData?: ArrayBuffer, trainingConfig?: TrainingConfig): IOHandler {
|
if (arguments.length === 1) {
|
const isModelArtifacts =
|
(modelArtifacts as ModelArtifacts).modelTopology != null ||
|
(modelArtifacts as ModelArtifacts).weightSpecs != null;
|
if (isModelArtifacts) {
|
return new PassthroughLoader(modelArtifacts as ModelArtifacts);
|
} else {
|
// Legacy support: with only modelTopology.
|
// TODO(cais): Remove this deprecated API.
|
console.warn(
|
'Please call tf.io.fromMemory() with only one argument. ' +
|
'The argument should be of type ModelArtifacts. ' +
|
'The multi-argument signature of tf.io.fromMemory() has been ' +
|
'deprecated and will be removed in a future release.');
|
return new PassthroughLoader({modelTopology: modelArtifacts as {}});
|
}
|
} else {
|
// Legacy support.
|
// TODO(cais): Remove this deprecated API.
|
console.warn(
|
'Please call tf.io.fromMemory() with only one argument. ' +
|
'The argument should be of type ModelArtifacts. ' +
|
'The multi-argument signature of tf.io.fromMemory() has been ' +
|
'deprecated and will be removed in a future release.');
|
return new PassthroughLoader({
|
modelTopology: modelArtifacts as {},
|
weightSpecs,
|
weightData,
|
trainingConfig
|
});
|
}
|
}
|
|
/**
|
* Creates an IOHandler that passes saved model artifacts to a callback.
|
*
|
* ```js
|
* function handleSave(artifacts) {
|
* // ... do something with the artifacts ...
|
* return {modelArtifactsInfo: {...}, ...};
|
* }
|
*
|
* const saveResult = model.save(tf.io.withSaveHandler(handleSave));
|
* ```
|
*
|
* @param saveHandler A function that accepts a `ModelArtifacts` and returns a
|
* `SaveResult`.
|
*/
|
export function withSaveHandler(
|
saveHandler: (artifacts: ModelArtifacts) =>
|
Promise<SaveResult>): IOHandler {
|
return new PassthroughSaver(saveHandler);
|
}
|