/**
|
* @license
|
* Copyright 2018 Google Inc. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
|
import {Tensor} from '../tensor';
|
import {convertToTensor} from '../tensor_util_env';
|
import {TensorLike} from '../types';
|
import * as util from '../util';
|
|
import {whereAsync} from './logical_ops';
|
import {gather} from './segment_ops';
|
|
/**
|
* Apply boolean mask to tensor.
|
*
|
* ```js
|
* const tensor = tf.tensor2d([1, 2, 3, 4, 5, 6], [3, 2]);
|
* const mask = tf.tensor1d([1, 0, 1], 'bool');
|
* const result = await tf.booleanMaskAsync(tensor, mask);
|
* result.print();
|
* ```
|
*
|
* @param tensor N-D tensor.
|
* @param mask K-D boolean tensor, K <= N and K must be known statically.
|
* @param axis A 0-D int Tensor representing the axis in tensor to mask from.
|
* By default, axis is 0 which will mask from the first dimension.
|
* Otherwise K + axis <= N.
|
*/
|
/** @doc {heading: 'Tensors', subheading: 'Slicing and Joining'} */
|
async function booleanMaskAsync_(
|
tensor: Tensor|TensorLike, mask: Tensor|TensorLike,
|
axis?: number): Promise<Tensor> {
|
const $tensor = convertToTensor(tensor, 'tensor', 'boolMask');
|
const $mask = convertToTensor(mask, 'mask', 'boolMask', 'bool');
|
|
const axisFrom = axis == null ? 0 : axis;
|
const maskDim = $mask.rank;
|
const tensorShape = $tensor.shape;
|
|
util.assert(maskDim > 0, () => 'mask cannot be scalar');
|
util.assertShapesMatch(
|
tensorShape.slice(axisFrom, axisFrom + maskDim), $mask.shape,
|
`mask's shape must match the first K dimensions of tensor's shape,`);
|
|
let leadingSize = 1;
|
for (let i = axisFrom; i < axisFrom + maskDim; i++) {
|
leadingSize *= tensorShape[i];
|
}
|
const targetTensorShape =
|
tensorShape.slice(0, axisFrom)
|
.concat([leadingSize], tensorShape.slice(axisFrom + maskDim));
|
const reshapedTensor = $tensor.reshape(targetTensorShape);
|
const reshapedMask = $mask.reshape([-1]);
|
const positivePositions = await whereAsync(reshapedMask);
|
const indices = positivePositions.squeeze([1]);
|
|
const res = gather(reshapedTensor, indices, axisFrom);
|
|
// Ensure no memory leak.
|
if (tensor !== $tensor) {
|
$tensor.dispose();
|
}
|
if (mask !== $mask) {
|
$mask.dispose();
|
}
|
indices.dispose();
|
reshapedTensor.dispose();
|
reshapedMask.dispose();
|
positivePositions.dispose();
|
|
return res;
|
}
|
|
export const booleanMaskAsync = booleanMaskAsync_;
|