/**
|
* @license
|
* Copyright 2018 Google Inc. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
|
import {Tensor1D, Tensor2D} from '../tensor';
|
import {convertToTensor} from '../tensor_util_env';
|
import {TensorLike} from '../types';
|
import * as util from '../util';
|
|
import {oneHot} from './array_ops';
|
import {op} from './operation';
|
|
/**
|
* Computes the confusion matrix from true labels and predicted labels.
|
*
|
* ```js
|
* const labels = tf.tensor1d([0, 1, 2, 1, 0], 'int32');
|
* const predictions = tf.tensor1d([0, 2, 2, 1, 0], 'int32');
|
* const numClasses = 3;
|
* const out = tf.math.confusionMatrix(labels, predictions, numClasses);
|
* out.print();
|
* // Expected output matrix:
|
* // [[2, 0, 0],
|
* // [0, 1, 1],
|
* // [0, 0, 1]]
|
* ```
|
*
|
* @param labels The target labels, assumed to be 0-based integers
|
* for the classes. The shape is `[numExamples]`, where
|
* `numExamples` is the number of examples included.
|
* @param predictions The predicted classes, assumed to be
|
* 0-based integers for the classes. Must have the same shape as `labels`.
|
* @param numClasses Number of all classes, as an integer.
|
* Its value must be larger than the largest element in `labels` and
|
* `predictions`.
|
* @returns The confusion matrix as a int32-type 2D tensor. The value at
|
* row `r` and column `c` is the number of times examples of actual class
|
* `r` were predicted as class `c`.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Evaluation'} */
|
export function confusionMatrix_(
|
labels: Tensor1D|TensorLike, predictions: Tensor1D|TensorLike,
|
numClasses: number): Tensor2D {
|
const $labels = convertToTensor(labels, 'labels', 'confusionMatrix');
|
const $predictions =
|
convertToTensor(predictions, 'predictions', 'confusionMatrix');
|
|
util.assert(
|
numClasses == null || numClasses > 0 && Number.isInteger(numClasses),
|
() => `If provided, numClasses must be a positive integer, ` +
|
`but got ${numClasses}`);
|
util.assert(
|
$labels.rank === 1,
|
() => `Expected the rank of labels to be 1, but got ${$labels.rank}`);
|
util.assert(
|
$predictions.rank === 1,
|
() => `Expected the rank of predictions to be 1, ` +
|
`but got ${$predictions.rank}`);
|
util.assert(
|
$labels.shape[0] === $predictions.shape[0],
|
() => `Mismatch in the number of examples: ` +
|
`${$labels.shape[0]} vs. ${$predictions.shape[0]}. ` +
|
`Labels and predictions should have the same number of elements.`);
|
util.assert(
|
numClasses > 0 && Number.isInteger(numClasses),
|
() => `numClasses is required to be a positive integer, but got ` +
|
`${numClasses}`);
|
// TODO(cais): In the future, if oneHot supports tensors inputs for
|
// `numClasses`, `confusionMatrix` can make `numClasses` optional.
|
|
const oneHotLabels = oneHot($labels.asType('int32'), numClasses) as Tensor2D;
|
const oneHotPredictions =
|
oneHot($predictions.asType('int32'), numClasses) as Tensor2D;
|
return oneHotLabels.transpose().matMul(oneHotPredictions).asType('int32');
|
}
|
|
export const confusionMatrix = op({confusionMatrix_});
|