/**
|
* @license
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
|
import {ENGINE} from '../engine';
|
import {conv2dDerFilter, conv2dDerInput, depthwiseConv2dDerFilter, depthwiseConv2dDerInput} from '../ops/conv';
|
import * as conv_util from '../ops/conv_util';
|
import {op} from '../ops/operation';
|
import {Tensor, Tensor3D, Tensor4D} from '../tensor';
|
import {makeTypesMatch} from '../tensor_util';
|
import {convertToTensor} from '../tensor_util_env';
|
import {TensorLike} from '../types';
|
import * as util from '../util';
|
|
import {add} from './binary_ops';
|
import * as broadcast_util from './broadcast_util';
|
import {conv2d as unfusedConv2d, depthwiseConv2d as unfusedDepthwiseConv2d} from './conv';
|
import {Activation, shouldFuse} from './fused_util';
|
import {matMul as unfusedMatMul} from './matmul';
|
|
import {elu, prelu, relu, relu6} from './relu_ops';
|
|
// Returns gradient for fused activation.
|
const getFusedDyActivation =
|
(dy: Tensor, y: Tensor, activation: Activation): Tensor => {
|
if (activation == null || activation === 'linear') {
|
return dy;
|
}
|
if (activation === 'relu') {
|
return dy.mul(y.step());
|
}
|
throw new Error(
|
`Gradient for activation ${activation} has not been ` +
|
`implemented yet.`);
|
};
|
|
// Returns gradient for fused bias.
|
const getFusedBiasGradient = (bias: Tensor, dyActivation: Tensor): Tensor => {
|
let res = dyActivation;
|
const reduceAxes =
|
broadcast_util.getReductionAxes(bias.shape, dyActivation.shape);
|
if (reduceAxes.length > 0) {
|
res = res.sum(reduceAxes);
|
}
|
return res.reshape(bias.shape);
|
};
|
|
const applyActivation =
|
(x: Tensor, activation: Activation, preluActivationWeights?: Tensor):
|
Tensor => {
|
if (activation === 'linear') {
|
return x;
|
} else if (activation === 'relu') {
|
return relu(x);
|
} else if (activation === 'elu') {
|
return elu(x);
|
} else if (activation === 'relu6') {
|
return relu6(x);
|
} else if (activation === 'prelu') {
|
return prelu(x, preluActivationWeights);
|
}
|
throw new Error(`Unknown fused activation ${activation}.`);
|
};
|
|
/**
|
* Computes the dot product of two matrices with optional activation and bias.
|
*
|
* ```js
|
* const a = tf.tensor2d([-1, -2], [1, 2]);
|
* const b = tf.tensor2d([1, 2, 3, 4], [2, 2]);
|
* const bias = tf.tensor2d([1, 2], [1, 2]);
|
*
|
* tf.fused.matMul({a, b, bias, activation: 'relu'}).print();
|
* ```
|
*
|
* @param obj An object with the following properties:
|
* - `a` First matrix in dot product operation.
|
* - `b` Second matrix in dot product operation.
|
* - `transposeA` If true, `a` is transposed before multiplication.
|
* - `transposeB` If true, `b` is transposed before multiplication.
|
* - `bias` Matrix to be added to the result.
|
* - `activation` Name of activation kernel (defaults to `linear`).
|
* - `preluActivationWeights` Tensor of prelu weights.
|
*/
|
function fusedMatMul_<T extends Tensor>({
|
a,
|
b,
|
transposeA = false,
|
transposeB = false,
|
bias,
|
activation = 'linear',
|
preluActivationWeights
|
}: {
|
a: T|TensorLike,
|
b: T|TensorLike,
|
transposeA?: boolean,
|
transposeB?: boolean,
|
bias?: Tensor|TensorLike,
|
activation?: Activation,
|
preluActivationWeights?: Tensor
|
}): T {
|
if (shouldFuse(ENGINE.state.gradientDepth, activation) === false) {
|
let result = unfusedMatMul(a, b, transposeA, transposeB);
|
if (bias != null) {
|
result = add(result, bias);
|
}
|
|
return applyActivation(result, activation, preluActivationWeights) as T;
|
}
|
|
let $a = convertToTensor(a, 'a', 'fused matMul');
|
let $b = convertToTensor(b, 'b', 'fused matMul');
|
[$a, $b] = makeTypesMatch($a, $b);
|
|
const innerShapeA =
|
transposeA ? $a.shape[$a.rank - 2] : $a.shape[$a.rank - 1];
|
const innerShapeB =
|
transposeB ? $b.shape[$b.rank - 1] : $b.shape[$b.rank - 2];
|
|
const outerShapeA =
|
transposeA ? $a.shape[$a.rank - 1] : $a.shape[$a.rank - 2];
|
const outerShapeB =
|
transposeB ? $b.shape[$b.rank - 2] : $b.shape[$b.rank - 1];
|
|
const outerDimsA = $a.shape.slice(0, -2);
|
const outerDimsB = $b.shape.slice(0, -2);
|
const batchDimA = util.sizeFromShape(outerDimsA);
|
const batchDimB = util.sizeFromShape(outerDimsB);
|
|
util.assert(
|
$a.rank >= 2 && $b.rank >= 2 && $a.rank === $b.rank,
|
() =>
|
`Error in fused matMul: inputs must have the same rank of at least ` +
|
`2, got ranks ${$a.rank} and ${$b.rank}.`);
|
|
util.assert(
|
util.arraysEqual(outerDimsA, outerDimsB),
|
() => `Error in fused matMul: outer dimensions (${outerDimsA}) and (` +
|
`${outerDimsB}) of Tensors with shapes ${$a.shape} and ` +
|
`${$b.shape} must match.`);
|
|
util.assert(
|
innerShapeA === innerShapeB,
|
() => `Error in fused matMul: inner shapes (${innerShapeA}) and (` +
|
`${innerShapeB}) of Tensors with shapes ${$a.shape} and ` +
|
`${$b.shape} and transposeA=${transposeA}` +
|
` and transposeB=${transposeB} must match.`);
|
|
const outShape = $a.shape.slice(0, -2).concat([outerShapeA, outerShapeB]);
|
|
const a3D = transposeA ? $a.as3D(batchDimA, innerShapeA, outerShapeA) :
|
$a.as3D(batchDimA, outerShapeA, innerShapeA);
|
const b3D = transposeB ? $b.as3D(batchDimB, outerShapeB, innerShapeB) :
|
$b.as3D(batchDimB, innerShapeB, outerShapeB);
|
|
let $bias: Tensor;
|
if (bias != null) {
|
$bias = convertToTensor(bias, 'bias', 'fused matMul');
|
[$bias] = makeTypesMatch($bias, $a);
|
|
broadcast_util.assertAndGetBroadcastShape(outShape, $bias.shape);
|
}
|
|
let $preluActivationWeights: Tensor;
|
if (preluActivationWeights != null) {
|
$preluActivationWeights = convertToTensor(
|
preluActivationWeights, 'prelu weights', 'fused matMul');
|
}
|
|
const grad = (dy: Tensor3D, saved: Tensor[]) => {
|
const [a3D, b3D, y] = saved;
|
const dyActivation = getFusedDyActivation(dy, y, activation);
|
|
let biasGradient = {};
|
if (bias != null) {
|
biasGradient = {bias: () => getFusedBiasGradient($bias, dyActivation)};
|
}
|
|
if (!transposeA && !transposeB) {
|
return Object.assign(
|
{
|
a: () => dyActivation.matMul(b3D as Tensor3D, false, true),
|
b: () => a3D.matMul(dyActivation, true, false)
|
},
|
biasGradient);
|
} else if (!transposeA && transposeB) {
|
return Object.assign(
|
{
|
a: () => dyActivation.matMul(b3D as Tensor3D, false, false),
|
b: () => dyActivation.matMul(a3D as Tensor3D, true, false)
|
},
|
biasGradient);
|
} else if (transposeA && !transposeB) {
|
return Object.assign(
|
{
|
a: () => b3D.matMul(dyActivation, false, true),
|
b: () => a3D.matMul(dyActivation, false, false)
|
},
|
biasGradient);
|
} else {
|
return Object.assign(
|
{
|
a: () => b3D.matMul(dyActivation, true, true),
|
b: () => dyActivation.matMul(a3D as Tensor3D, true, true)
|
},
|
biasGradient);
|
}
|
};
|
|
const inputs:
|
{a: Tensor, b: Tensor,
|
bias?: Tensor,
|
preluActivationWeights?: Tensor} = {a: a3D, b: b3D};
|
if (bias != null) {
|
inputs.bias = $bias;
|
}
|
if (preluActivationWeights != null) {
|
inputs.preluActivationWeights = $preluActivationWeights;
|
}
|
|
const inputsToSave = [a3D, b3D];
|
const outputsToSave = [true];
|
|
const res = ENGINE.runKernelFunc(
|
(backend, save) => {
|
const y = backend.fusedBatchMatMul({
|
a: a3D,
|
b: b3D,
|
transposeA,
|
transposeB,
|
bias: $bias,
|
activation,
|
preluActivationWeights: $preluActivationWeights
|
});
|
save([a3D, b3D, y]);
|
return y;
|
},
|
inputs, grad, '_FusedMatMul', {transposeA, transposeB, activation},
|
inputsToSave, outputsToSave);
|
return res.reshape(outShape) as T;
|
}
|
|
/**
|
* Computes a 2D convolution over the input x, optionally fused with adding a
|
* bias and applying an activation.
|
*
|
* ```js
|
* const inputDepth = 2;
|
* const inShape = [2, 2, 2, inputDepth];
|
* const outputDepth = 2;
|
* const fSize = 1;
|
* const pad = 0;
|
* const strides = 1;
|
*
|
* const x = tf.tensor4d( [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
* 16], inShape);
|
* const w = tf.tensor4d([-1, 1, -2, 0.5], [fSize, fSize, inputDepth,
|
* outputDepth]);
|
*
|
* tf.fused.conv2d({ x, filter: w, strides, pad, dataFormat: 'NHWC',
|
* dilations: [1, 1], bias: tf.scalar(5), activation: 'relu' }).print();
|
* ```
|
*
|
* @param obj An object with the following properties:
|
* @param x The input tensor, of rank 4 or rank 3, of shape
|
* `[batch, height, width, inChannels]`. If rank 3, batch of 1 is
|
* assumed.
|
* @param filter The filter, rank 4, of shape
|
* `[filterHeight, filterWidth, inDepth, outDepth]`.
|
* @param strides The strides of the convolution: `[strideHeight,
|
* strideWidth]`.
|
* @param pad The type of padding algorithm.
|
* - `same` and stride 1: output will be of same size as input,
|
* regardless of filter size.
|
* - `valid` output will be smaller than input if filter is larger
|
* than 1x1.
|
* - For more info, see this guide:
|
* [https://www.tensorflow.org/api_guides/python/nn#Convolution](
|
* https://www.tensorflow.org/api_guides/python/nn#Convolution)
|
* @param dataFormat An optional string from: "NHWC", "NCHW". Defaults to
|
* "NHWC". Specify the data format of the input and output data. With the
|
* default format "NHWC", the data is stored in the order of: [batch,
|
* height, width, channels]. Only "NHWC" is currently supported.
|
* @param dilations The dilation rates: `[dilationHeight, dilationWidth]`
|
* in which we sample input values across the height and width dimensions
|
* in atrous convolution. Defaults to `[1, 1]`. If `dilations` is a single
|
* number, then `dilationHeight == dilationWidth`. If it is greater than
|
* 1, then all values of `strides` must be 1.
|
* @param dimRoundingMode The rounding mode used when computing output
|
* dimensions if pad is a number. If none is provided, it will not round
|
* and error if the output is of fractional size.
|
* @param bias Tensor to be added to the result.
|
* @param activation Name of activation kernel (defaults to `linear`) to be
|
* applied
|
* after biasAdd.
|
* @param preluActivationWeights Tensor of prelu weights to be applied as part
|
* of a `prelu` activation, typically the same shape as `x`.
|
*/
|
function fusedConv2d_<T extends Tensor3D|Tensor4D>({
|
x,
|
filter,
|
strides,
|
pad,
|
dataFormat = 'NHWC',
|
dilations = [1, 1],
|
dimRoundingMode,
|
bias,
|
activation = 'linear',
|
preluActivationWeights
|
}: {
|
x: T|TensorLike,
|
filter: Tensor4D|TensorLike,
|
strides: [number, number]|number,
|
pad: 'valid'|'same'|number,
|
dataFormat?: 'NHWC'|'NCHW',
|
dilations?: [number, number]|number,
|
dimRoundingMode?: 'floor'|'round'|'ceil',
|
bias?: Tensor|TensorLike,
|
activation?: Activation,
|
preluActivationWeights?: Tensor
|
}): T {
|
activation = activation || 'linear';
|
if (shouldFuse(ENGINE.state.gradientDepth, activation) === false) {
|
let result = unfusedConv2d(
|
x, filter, strides, pad, dataFormat, dilations, dimRoundingMode);
|
if (bias != null) {
|
result = add(result, bias);
|
}
|
|
return applyActivation(result, activation, preluActivationWeights) as T;
|
}
|
|
const $x = convertToTensor(x, 'x', 'conv2d');
|
const $filter = convertToTensor(filter, 'filter', 'conv2d');
|
|
let x4D = $x as Tensor4D;
|
let reshapedTo4D = false;
|
|
if ($x.rank === 3) {
|
reshapedTo4D = true;
|
x4D = $x.as4D(1, $x.shape[0], $x.shape[1], $x.shape[2]);
|
}
|
util.assert(
|
x4D.rank === 4,
|
() => `Error in fused conv2d: input must be rank 4, but got rank ` +
|
`${x4D.rank}.`);
|
util.assert(
|
$filter.rank === 4,
|
() => `Error in fused conv2d: filter must be rank 4, but got rank ` +
|
`${$filter.rank}.`);
|
if (dimRoundingMode != null) {
|
util.assert(
|
util.isInt(pad as number),
|
() => `Error in fused conv2d: pad must be an integer when using, ` +
|
`dimRoundingMode ${dimRoundingMode} but got pad ${pad}.`);
|
}
|
|
util.assert(
|
x4D.shape[3] === $filter.shape[2],
|
() => `Error in conv2d: depth of input (${x4D.shape[3]}) must match ` +
|
`input depth for filter ${$filter.shape[2]}.`);
|
util.assert(
|
conv_util.eitherStridesOrDilationsAreOne(strides, dilations),
|
() => 'Error in conv2D: Either strides or dilations must be 1. ' +
|
`Got strides ${strides} and dilations '${dilations}'`);
|
util.assert(
|
dataFormat === 'NHWC',
|
() => `Error in conv2d: got dataFormat of ${
|
dataFormat} but only NHWC is currently supported.`);
|
|
const convInfo = conv_util.computeConv2DInfo(
|
x4D.shape, $filter.shape, strides, dilations, pad, dimRoundingMode);
|
|
let $bias: Tensor;
|
if (bias != null) {
|
$bias = convertToTensor(bias, 'bias', 'fused conv2d');
|
[$bias] = makeTypesMatch($bias, $x);
|
|
broadcast_util.assertAndGetBroadcastShape(convInfo.outShape, $bias.shape);
|
}
|
|
let $preluActivationWeights: Tensor;
|
if (preluActivationWeights != null) {
|
$preluActivationWeights = convertToTensor(
|
preluActivationWeights, 'prelu weights', 'fused conv2d');
|
}
|
|
const grad = (dy: Tensor4D, saved: Tensor[]) => {
|
const [$filter, x4D, y] = saved as [Tensor4D, Tensor4D, Tensor4D];
|
|
const dyActivation = getFusedDyActivation(dy, y, activation) as Tensor4D;
|
|
util.assert(
|
conv_util.tupleValuesAreOne(dilations),
|
() => 'Error in gradient of fused conv2D: ' +
|
`dilation rates greater than 1 ` +
|
`are not yet supported in gradients. Got dilations '${dilations}'`);
|
|
let biasGradient = {};
|
if (bias != null) {
|
biasGradient = {bias: () => getFusedBiasGradient($bias, dyActivation)};
|
}
|
|
return Object.assign(
|
{
|
x: () =>
|
conv2dDerInput(x4D.shape, dyActivation, $filter, strides, pad),
|
filter: () =>
|
conv2dDerFilter(x4D, dyActivation, $filter.shape, strides, pad)
|
},
|
biasGradient);
|
};
|
|
const inputs: {
|
x: Tensor,
|
filter: Tensor,
|
bias?: Tensor,
|
preluActivationWeights?: Tensor
|
} = {x: x4D, filter: $filter};
|
if (bias != null) {
|
inputs.bias = $bias;
|
}
|
if (preluActivationWeights != null) {
|
inputs.preluActivationWeights = $preluActivationWeights;
|
}
|
|
const inputsToSave = [$filter, x4D];
|
const outputsToSave = [true]; // Save the only output.
|
const res = ENGINE.runKernelFunc(
|
(backend, save) => {
|
const res = backend.fusedConv2d({
|
input: x4D,
|
filter: $filter,
|
convInfo,
|
bias: $bias,
|
activation,
|
preluActivationWeights: $preluActivationWeights
|
});
|
save([$filter, x4D, res]);
|
return res;
|
},
|
inputs, grad, 'FusedConv2D', {convInfo, activation}, inputsToSave,
|
outputsToSave);
|
|
if (reshapedTo4D) {
|
return res.as3D(res.shape[1], res.shape[2], res.shape[3]) as T;
|
}
|
|
return res as T;
|
}
|
|
/**
|
* Computes depthwise 2D convolution, optionally fused with adding a
|
* bias and applying an activation.
|
*
|
* Given a 4D `input` array and a `filter` array of shape
|
* `[filterHeight, filterWidth, inChannels, channelMultiplier]` containing
|
* `inChannels` convolutional filters of depth 1, this op applies a
|
* different filter to each input channel (expanding from 1 channel to
|
* `channelMultiplier` channels for each), then concatenates the results
|
* together. The output has `inChannels * channelMultiplier` channels.
|
*
|
* See
|
* [https://www.tensorflow.org/api_docs/python/tf/nn/depthwise_conv2d](
|
* https://www.tensorflow.org/api_docs/python/tf/nn/depthwise_conv2d)
|
* for more details.
|
*
|
* @param obj An object with the following properties:
|
* @param x The input tensor, of rank 4 or rank 3, of shape
|
* `[batch, height, width, inChannels]`. If rank 3, batch of 1 is
|
* assumed.
|
* @param filter The filter tensor, rank 4, of shape
|
* `[filterHeight, filterWidth, inChannels, channelMultiplier]`.
|
* @param strides The strides of the convolution: `[strideHeight,
|
* strideWidth]`. If strides is a single number, then `strideHeight ==
|
* strideWidth`.
|
* @param pad The type of padding algorithm.
|
* - `same` and stride 1: output will be of same size as input,
|
* regardless of filter size.
|
* - `valid`: output will be smaller than input if filter is larger
|
* than 1x1.
|
* - For more info, see this guide:
|
* [https://www.tensorflow.org/api_guides/python/nn#Convolution](
|
* https://www.tensorflow.org/api_guides/python/nn#Convolution)
|
* @param dilations The dilation rates: `[dilationHeight, dilationWidth]`
|
* in which we sample input values across the height and width dimensions
|
* in atrous convolution. Defaults to `[1, 1]`. If `rate` is a single
|
* number, then `dilationHeight == dilationWidth`. If it is greater than
|
* 1, then all values of `strides` must be 1.
|
* @param dataFormat: An optional string from: "NHWC", "NCHW". Defaults to
|
* "NHWC". Specify the data format of the input and output data. With the
|
* default format "NHWC", the data is stored in the order of: [batch,
|
* height, width, channels]. Only "NHWC" is currently supported.
|
* @param dimRoundingMode The rounding mode used when computing output
|
* dimensions if pad is a number. If none is provided, it will not round
|
* and error if the output is of fractional size.
|
* @param bias Tensor to be added to the result.
|
* @param activation Name of activation kernel (defaults to `linear`).
|
* @param preluActivationWeights Tensor of prelu weights to be applied as part
|
* of a `prelu` activation, typically the same shape as `x`.
|
*/
|
function fusedDepthwiseConv2d_<T extends Tensor3D|Tensor4D>({
|
x,
|
filter,
|
strides,
|
pad,
|
dataFormat = 'NHWC',
|
dilations = [1, 1],
|
dimRoundingMode,
|
bias,
|
activation = 'linear',
|
preluActivationWeights
|
}: {
|
x: T|TensorLike,
|
filter: Tensor4D|TensorLike,
|
strides: [number, number]|number,
|
pad: 'valid'|'same'|number,
|
dataFormat?: 'NHWC'|'NCHW',
|
dilations?: [number, number]|number,
|
dimRoundingMode?: 'floor'|'round'|'ceil',
|
bias?: Tensor|TensorLike,
|
activation?: Activation,
|
preluActivationWeights?: Tensor
|
}): T {
|
if (shouldFuse(ENGINE.state.gradientDepth, activation) === false) {
|
let result = unfusedDepthwiseConv2d(
|
x, filter, strides, pad, dataFormat, dilations, dimRoundingMode);
|
if (bias != null) {
|
result = add(result, bias);
|
}
|
|
return applyActivation(result, activation, preluActivationWeights) as T;
|
}
|
|
const $x = convertToTensor(x, 'x', 'depthwiseConv2d');
|
const $filter = convertToTensor(filter, 'filter', 'depthwiseConv2d');
|
|
let x4D = $x as Tensor4D;
|
let reshapedTo4D = false;
|
if ($x.rank === 3) {
|
reshapedTo4D = true;
|
x4D = $x.as4D(1, $x.shape[0], $x.shape[1], $x.shape[2]);
|
}
|
util.assert(
|
x4D.rank === 4,
|
() => `Error in fused depthwiseConv2d: input must be rank 4, but got ` +
|
`rank ${x4D.rank}.`);
|
util.assert(
|
$filter.rank === 4,
|
() => `Error in fused depthwiseConv2d: filter must be rank 4, ` +
|
`but got rank ${$filter.rank}.`);
|
util.assert(
|
x4D.shape[3] === $filter.shape[2],
|
() => `Error in fused depthwiseConv2d: number of input channels ` +
|
`(${x4D.shape[3]}) must match the inChannels dimension in ` +
|
`filter ${$filter.shape[2]}.`);
|
if (dilations == null) {
|
dilations = [1, 1];
|
}
|
util.assert(
|
conv_util.eitherStridesOrDilationsAreOne(strides, dilations),
|
() =>
|
'Error in fused depthwiseConv2d: Either strides or dilations must ' +
|
`be 1. Got strides ${strides} and dilations '${dilations}'`);
|
|
if (dimRoundingMode != null) {
|
util.assert(
|
util.isInt(pad as number),
|
() => `Error in fused depthwiseConv2d: pad must be an integer when ` +
|
`using dimRoundingMode ${dimRoundingMode} but got pad ${pad}.`);
|
}
|
|
const convInfo = conv_util.computeConv2DInfo(
|
x4D.shape, $filter.shape, strides, dilations, pad, dimRoundingMode,
|
true /* depthwise */);
|
|
let $bias: Tensor;
|
if (bias != null) {
|
$bias = convertToTensor(bias, 'bias', 'fused conv2d');
|
[$bias] = makeTypesMatch($bias, $x);
|
|
broadcast_util.assertAndGetBroadcastShape(convInfo.outShape, $bias.shape);
|
}
|
|
let $preluActivationWeights: Tensor;
|
if (preluActivationWeights != null) {
|
$preluActivationWeights = convertToTensor(
|
preluActivationWeights, 'prelu weights', 'fused depthwiseConv2d');
|
}
|
|
const grad = (dy: Tensor4D, saved: Tensor[]) => {
|
util.assert(
|
conv_util.tupleValuesAreOne(dilations),
|
() => 'Error in gradient of fused depthwiseConv2d: dilation rates ' +
|
`greater than 1 are not yet supported. Got dilations ` +
|
`'${dilations}'`);
|
const [$filter, x4D, y] = saved;
|
|
const dyActivation = getFusedDyActivation(dy, y, activation) as Tensor4D;
|
|
let biasGradient = {};
|
if (bias != null) {
|
biasGradient = {bias: () => getFusedBiasGradient($bias, dyActivation)};
|
}
|
|
return Object.assign(
|
{
|
x: () => depthwiseConv2dDerInput(
|
(x4D as Tensor4D).shape, dyActivation, $filter as Tensor4D,
|
convInfo),
|
filter: () => depthwiseConv2dDerFilter(
|
x4D as Tensor4D, dyActivation, ($filter as Tensor4D).shape,
|
convInfo),
|
},
|
biasGradient);
|
};
|
|
const inputs: {
|
x: Tensor,
|
filter: Tensor,
|
bias?: Tensor,
|
preluActivationWeights?: Tensor
|
} = {x: x4D, filter: $filter};
|
if (bias != null) {
|
inputs.bias = $bias;
|
}
|
if (preluActivationWeights != null) {
|
inputs.preluActivationWeights = $preluActivationWeights;
|
}
|
|
const inputsToSave = [$filter, x4D];
|
const outputsToSave = [true];
|
const res = ENGINE.runKernelFunc(
|
(backend, save) => {
|
const res = backend.fusedDepthwiseConv2D({
|
input: x4D,
|
filter: $filter,
|
convInfo,
|
bias: $bias,
|
activation,
|
preluActivationWeights: $preluActivationWeights
|
});
|
save([$filter, x4D, res]);
|
return res;
|
},
|
inputs, grad, 'FusedDepthwiseConv2D', {convInfo, activation},
|
inputsToSave, outputsToSave);
|
if (reshapedTo4D) {
|
return res.as3D(res.shape[1], res.shape[2], res.shape[3]) as T;
|
}
|
return res as T;
|
}
|
|
export const matMul = op({fusedMatMul_});
|
export const conv2d = op({fusedConv2d_});
|
export const depthwiseConv2d = op({fusedDepthwiseConv2d_});
|
|
export {Activation};
|