/**
|
* @license
|
* Copyright 2018 Google Inc. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
import {Tensor} from '../tensor';
|
import {computeStrides} from '../util';
|
|
/**
|
* Validate gather nd inputs.
|
*
|
* @param tensor The tensor contains the source values.
|
* @param indices The tensor contains the indices to slice the source.
|
*
|
* @returns [resultShape, numUpdates, sliceSize, strides]
|
*/
|
export function prepareAndValidate(
|
tensor: Tensor, indices: Tensor): [number[], number, number, number[]] {
|
if (tensor.rank < 1) {
|
throw new Error(
|
'tf.gatherND() expects the input to be rank 1 or higher,' +
|
` but the rank was ${tensor.rank}.`);
|
}
|
if (indices.rank < 1) {
|
throw new Error(
|
'tf.gatherND() expects the indices to be rank 1 or higher,' +
|
` but the rank was ${indices.rank}.`);
|
}
|
if (indices.dtype !== 'int32') {
|
throw new Error(
|
'tf.gatherND() expects the indices to be int32 type,' +
|
` but the dtype was ${indices.dtype}.`);
|
}
|
if (indices.shape[indices.rank - 1] > tensor.rank) {
|
throw new Error(
|
'index innermost dimension length must be <= tensor rank; saw: ' +
|
`${indices.shape[indices.rank - 1]} vs. ${tensor.rank}`);
|
}
|
|
if (tensor.size === 0) {
|
throw new Error(
|
'Requested more than 0 entries, but input is empty.' +
|
` Input shape: ${tensor.shape}.`);
|
}
|
|
const indicesShape = indices.shape;
|
const sliceRank = indicesShape[indicesShape.length - 1];
|
|
// The result shape is
|
// indices.shape[:-1] + params.shape[indices.shape[-1]:]
|
let nResult = 1;
|
for (let i = 0; i < indicesShape.length - 1; ++i) {
|
nResult *= indicesShape[i];
|
}
|
|
const inputShape = tensor.shape;
|
|
const resultShape = indicesShape.slice();
|
resultShape.pop();
|
|
let sliceSize = 1;
|
for (let i = sliceRank; i < tensor.rank; ++i) {
|
sliceSize *= inputShape[i];
|
resultShape.push(inputShape[i]);
|
}
|
|
const strides =
|
[...computeStrides(tensor.shape).map(stride => stride / sliceSize),
|
1].slice(0, sliceRank);
|
|
return [resultShape, nResult, sliceSize, strides];
|
}
|