/**
|
* @license
|
* Copyright 2018 Google Inc. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
|
import {Scalar, Tensor1D, Tensor2D} from '../tensor';
|
import {convertToTensor, convertToTensorArray} from '../tensor_util_env';
|
import {TensorLike} from '../types';
|
import {op} from './operation';
|
|
/**
|
* @docalias (data: Tensor2D, c: Tensor2D, h: Tensor2D): [Tensor2D, Tensor2D]
|
*/
|
export type LSTMCellFunc = {
|
(data: Tensor2D, c: Tensor2D, h: Tensor2D): [Tensor2D, Tensor2D];
|
};
|
|
/**
|
* Computes the next states and outputs of a stack of LSTMCells.
|
*
|
* Each cell output is used as input to the next cell.
|
*
|
* Returns `[cellState, cellOutput]`.
|
*
|
* Derived from tf.contrib.rn.MultiRNNCell.
|
*
|
* @param lstmCells Array of LSTMCell functions.
|
* @param data The input to the cell.
|
* @param c Array of previous cell states.
|
* @param h Array of previous cell outputs.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'RNN'} */
|
function multiRNNCell_(
|
lstmCells: LSTMCellFunc[], data: Tensor2D|TensorLike,
|
c: Array<Tensor2D|TensorLike>,
|
h: Array<Tensor2D|TensorLike>): [Tensor2D[], Tensor2D[]] {
|
const $data = convertToTensor(data, 'data', 'multiRNNCell');
|
const $c = convertToTensorArray(c, 'c', 'multiRNNCell');
|
const $h = convertToTensorArray(h, 'h', 'multiRNNCell');
|
|
let input = $data;
|
const newStates = [];
|
for (let i = 0; i < lstmCells.length; i++) {
|
const output = lstmCells[i](input, $c[i], $h[i]);
|
newStates.push(output[0]);
|
newStates.push(output[1]);
|
input = output[1];
|
}
|
const newC: Tensor2D[] = [];
|
const newH: Tensor2D[] = [];
|
for (let i = 0; i < newStates.length; i += 2) {
|
newC.push(newStates[i]);
|
newH.push(newStates[i + 1]);
|
}
|
return [newC, newH];
|
}
|
|
/**
|
* Computes the next state and output of a BasicLSTMCell.
|
*
|
* Returns `[newC, newH]`.
|
*
|
* Derived from tf.contrib.rnn.BasicLSTMCell.
|
*
|
* @param forgetBias Forget bias for the cell.
|
* @param lstmKernel The weights for the cell.
|
* @param lstmBias The bias for the cell.
|
* @param data The input to the cell.
|
* @param c Previous cell state.
|
* @param h Previous cell output.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'RNN'} */
|
function basicLSTMCell_(
|
forgetBias: Scalar|TensorLike, lstmKernel: Tensor2D|TensorLike,
|
lstmBias: Tensor1D|TensorLike, data: Tensor2D|TensorLike,
|
c: Tensor2D|TensorLike, h: Tensor2D|TensorLike): [Tensor2D, Tensor2D] {
|
const $forgetBias =
|
convertToTensor(forgetBias, 'forgetBias', 'basicLSTMCell');
|
const $lstmKernel =
|
convertToTensor(lstmKernel, 'lstmKernel', 'basicLSTMCell');
|
const $lstmBias = convertToTensor(lstmBias, 'lstmBias', 'basicLSTMCell');
|
const $data = convertToTensor(data, 'data', 'basicLSTMCell');
|
const $c = convertToTensor(c, 'c', 'basicLSTMCell');
|
const $h = convertToTensor(h, 'h', 'basicLSTMCell');
|
|
const combined = $data.concat($h, 1);
|
const weighted = combined.matMul($lstmKernel);
|
const res: Tensor2D = weighted.add($lstmBias);
|
|
// i = input_gate, j = new_input, f = forget_gate, o = output_gate
|
const batchSize = res.shape[0];
|
const sliceCols = res.shape[1] / 4;
|
const sliceSize: [number, number] = [batchSize, sliceCols];
|
const i = res.slice([0, 0], sliceSize);
|
const j = res.slice([0, sliceCols], sliceSize);
|
const f = res.slice([0, sliceCols * 2], sliceSize);
|
const o = res.slice([0, sliceCols * 3], sliceSize);
|
|
const newC = i.sigmoid().mulStrict(j.tanh()).addStrict(
|
$c.mulStrict($forgetBias.add(f).sigmoid() as Tensor2D));
|
const newH = newC.tanh().mulStrict(o.sigmoid());
|
return [newC, newH];
|
}
|
|
export const basicLSTMCell = op({basicLSTMCell_});
|
export const multiRNNCell = op({multiRNNCell_});
|