/**
|
* @license
|
* Copyright 2018 Google Inc. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
|
import {ENGINE} from '../engine';
|
import {Tensor, Tensor1D, Tensor2D, Tensor3D} from '../tensor';
|
import {makeTypesMatch} from '../tensor_util';
|
import {convertToTensor} from '../tensor_util_env';
|
import {TensorLike} from '../types';
|
import * as util from '../util';
|
import {op} from './operation';
|
|
/**
|
* Computes the dot product of two matrices, A * B. These must be matrices.
|
*
|
* ```js
|
* const a = tf.tensor2d([1, 2], [1, 2]);
|
* const b = tf.tensor2d([1, 2, 3, 4], [2, 2]);
|
*
|
* a.matMul(b).print(); // or tf.matMul(a, b)
|
* ```
|
* @param a First matrix in dot product operation.
|
* @param b Second matrix in dot product operation.
|
* @param transposeA If true, `a` is transposed before multiplication.
|
* @param transposeB If true, `b` is transposed before multiplication.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Matrices'} */
|
function matMul_<T extends Tensor>(
|
a: T|TensorLike, b: T|TensorLike, transposeA = false,
|
transposeB = false): T {
|
let $a = convertToTensor(a, 'a', 'matMul');
|
let $b = convertToTensor(b, 'b', 'matMul');
|
[$a, $b] = makeTypesMatch($a, $b);
|
|
const innerShapeA =
|
transposeA ? $a.shape[$a.rank - 2] : $a.shape[$a.rank - 1];
|
const innerShapeB =
|
transposeB ? $b.shape[$b.rank - 1] : $b.shape[$b.rank - 2];
|
|
const outerShapeA =
|
transposeA ? $a.shape[$a.rank - 1] : $a.shape[$a.rank - 2];
|
const outerShapeB =
|
transposeB ? $b.shape[$b.rank - 2] : $b.shape[$b.rank - 1];
|
|
const outerDimsA = $a.shape.slice(0, -2);
|
const outerDimsB = $b.shape.slice(0, -2);
|
const batchDimA = util.sizeFromShape(outerDimsA);
|
const batchDimB = util.sizeFromShape(outerDimsB);
|
|
util.assert(
|
$a.rank >= 2 && $b.rank >= 2 && $a.rank === $b.rank,
|
() => `Error in matMul: inputs must have the same rank of at least 2, ` +
|
`got ranks ${$a.rank} and ${$b.rank}.`);
|
|
util.assert(
|
util.arraysEqual(outerDimsA, outerDimsB),
|
() => `Error in matMul: outer dimensions (${outerDimsA}) and (` +
|
`${outerDimsB}) of Tensors with shapes ${$a.shape} and ` +
|
`${$b.shape} must match.`);
|
|
util.assert(
|
innerShapeA === innerShapeB,
|
() => `Error in matMul: inner shapes (${innerShapeA}) and (` +
|
`${innerShapeB}) of Tensors with shapes ${$a.shape} and ` +
|
`${$b.shape} and transposeA=${transposeA}` +
|
` and transposeB=${transposeB} must match.`);
|
|
const outShape = $a.shape.slice(0, -2).concat([outerShapeA, outerShapeB]);
|
|
const a3D = transposeA ? $a.as3D(batchDimA, innerShapeA, outerShapeA) :
|
$a.as3D(batchDimA, outerShapeA, innerShapeA);
|
const b3D = transposeB ? $b.as3D(batchDimB, outerShapeB, innerShapeB) :
|
$b.as3D(batchDimB, innerShapeB, outerShapeB);
|
|
const grad = (dy: Tensor3D, saved: Tensor[]) => {
|
const [a3D, b3D] = saved as Tensor3D[];
|
if (!transposeA && !transposeB) {
|
return {
|
a: () => dy.matMul(b3D, false, true),
|
b: () => a3D.matMul(dy, true, false)
|
};
|
} else if (!transposeA && transposeB) {
|
return {
|
a: () => dy.matMul(b3D, false, false),
|
b: () => dy.matMul(a3D, true, false)
|
};
|
} else if (transposeA && !transposeB) {
|
return {
|
a: () => b3D.matMul(dy, false, true),
|
b: () => a3D.matMul(dy, false, false)
|
};
|
} else {
|
return {
|
a: () => b3D.matMul(dy, true, true),
|
b: () => dy.matMul(a3D, true, true)
|
};
|
}
|
};
|
|
const attrs = {transposeA, transposeB};
|
const res = ENGINE.runKernelFunc((backend, save) => {
|
const res = backend.batchMatMul(a3D, b3D, transposeA, transposeB);
|
save([a3D, b3D]);
|
return res;
|
}, {a: a3D, b: b3D}, grad, 'BatchMatMul', attrs);
|
return res.reshape(outShape) as T;
|
}
|
|
/**
|
* Computes the outer product of two vectors, `v1` and `v2`.
|
*
|
* ```js
|
* const a = tf.tensor1d([1, 2, 3]);
|
* const b = tf.tensor1d([3, 4, 5]);
|
*
|
* tf.outerProduct(a, b).print();
|
* ```
|
* @param v1 The first vector in the outer product operation.
|
* @param v2 The second vector in the outer product operation.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Matrices'} */
|
function outerProduct_(
|
v1: Tensor1D|TensorLike, v2: Tensor1D|TensorLike): Tensor2D {
|
const $v1 = convertToTensor(v1, 'v1', 'outerProduct');
|
const $v2 = convertToTensor(v2, 'v2', 'outerProduct');
|
|
util.assert(
|
$v1.rank === 1 && $v2.rank === 1,
|
() => `Error in outerProduct: inputs must be rank 1, but got ranks ` +
|
`${$v1.rank} and ${$v2.rank}.`);
|
|
return $v1.as2D(-1, 1).matMul($v2.as2D(1, -1));
|
}
|
|
/**
|
* Computes the dot product of two matrices and/or vectors, `t1` and `t2`.
|
*
|
* ```js
|
* const a = tf.tensor1d([1, 2]);
|
* const b = tf.tensor2d([[1, 2], [3, 4]]);
|
* const c = tf.tensor2d([[1, 2, 3], [4, 5, 6]]);
|
*
|
* a.dot(b).print(); // or tf.dot(a, b)
|
* b.dot(a).print();
|
* b.dot(c).print();
|
* ```
|
* @param t1 The first tensor in the dot operation.
|
* @param t2 The second tensor in the dot operation.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Matrices'} */
|
function dot_(t1: Tensor|TensorLike, t2: Tensor|TensorLike): Tensor {
|
const $t1 = convertToTensor(t1, 't1', 'dot');
|
const $t2 = convertToTensor(t2, 't2', 'dot');
|
util.assert(
|
($t1.rank === 1 || $t1.rank === 2) && ($t2.rank === 1 || $t2.rank === 2),
|
() => `Error in dot: inputs must all be rank 1 or 2, but got ranks ` +
|
`${$t1.rank} and ${$t2.rank}.`);
|
|
const t1Inner = ($t1.rank === 1 ? $t1.size : $t1.shape[1]);
|
const t2Inner = ($t2.rank === 1 ? $t2.size : $t2.shape[0]);
|
|
util.assert(
|
t1Inner === t2Inner,
|
() => `Error in dot: inner dimensions of inputs must match, but got ` +
|
`${t1Inner} and ${t2Inner}.`);
|
|
if ($t1.rank === 1 && $t2.rank === 1) {
|
return $t1.as2D(1, -1).matMul($t2.as2D(-1, 1)).asScalar();
|
} else if ($t1.rank === 1 && $t2.rank === 2) {
|
return $t1.as2D(1, -1).matMul($t2.as2D($t2.shape[0], $t2.shape[1])).as1D();
|
} else if ($t1.rank === 2 && $t2.rank === 1) {
|
return $t1.matMul($t2.as2D(-1, 1)).as1D();
|
} else {
|
return $t1.matMul($t2.as2D($t2.shape[0], $t2.shape[1]));
|
}
|
}
|
|
export const matMul = op({matMul_});
|
export const dot = op({dot_});
|
export const outerProduct = op({outerProduct_});
|