/**
|
* @license
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
|
import {op} from '../ops/operation';
|
import {Tensor, Tensor1D} from '../tensor';
|
|
import {mul} from './binary_ops';
|
import {concat} from './concat_split';
|
import {slice} from './slice';
|
import {rfft} from './spectral_ops';
|
import {fill, tensor1d, tensor2d} from './tensor_ops';
|
|
/**
|
* Generate a Hann window.
|
*
|
* See: https://en.wikipedia.org/wiki/Window_function#Hann_and_Hamming_windows
|
*
|
* ```js
|
* tf.signal.hannWindow(10).print();
|
* ```
|
* @param The length of window
|
*/
|
/**
|
* @doc {heading: 'Operations', subheading: 'Signal', namespace: 'signal'}
|
*/
|
function hannWindow_(windowLength: number): Tensor1D {
|
return cosineWindow(windowLength, 0.5, 0.5);
|
}
|
|
/**
|
* Generate a hamming window.
|
*
|
* See: https://en.wikipedia.org/wiki/Window_function#Hann_and_Hamming_windows
|
*
|
* ```js
|
* tf.signal.hammingWindow(10).print();
|
* ```
|
* @param The length of window
|
*/
|
/**
|
* @doc {heading: 'Operations', subheading: 'Signal', namespace: 'signal'}
|
*/
|
function hammingWindow_(windowLength: number): Tensor1D {
|
return cosineWindow(windowLength, 0.54, 0.46);
|
}
|
|
/**
|
* Expands input into frames of frameLength.
|
* Slides a window size with frameStep.
|
*
|
* ```js
|
* tf.signal.frame([1, 2, 3], 2, 1).print();
|
* ```
|
* @param signal The input tensor to be expanded
|
* @param frameLength Length of each frame
|
* @param frameStep The frame hop size in samples.
|
* @param padEnd Whether to pad the end of signal with padValue.
|
* @param padValue An number to use where the input signal does
|
* not exist when padEnd is True.
|
*/
|
/**
|
* @doc {heading: 'Operations', subheading: 'Signal', namespace: 'signal'}
|
*/
|
function frame_(
|
signal: Tensor1D, frameLength: number, frameStep: number, padEnd = false,
|
padValue = 0): Tensor {
|
let start = 0;
|
const output: Tensor[] = [];
|
while (start + frameLength <= signal.size) {
|
output.push(slice(signal, start, frameLength));
|
start += frameStep;
|
}
|
|
if (padEnd) {
|
while (start < signal.size) {
|
const padLen = (start + frameLength) - signal.size;
|
const pad = concat(
|
[slice(signal, start, frameLength - padLen),
|
fill([padLen], padValue)]);
|
output.push(pad);
|
start += frameStep;
|
}
|
}
|
|
if (output.length === 0) {
|
return tensor2d([], [0, frameLength]);
|
}
|
|
return concat(output).as2D(output.length, frameLength);
|
}
|
|
/**
|
* Computes the Short-time Fourier Transform of signals
|
* See: https://en.wikipedia.org/wiki/Short-time_Fourier_transform
|
*
|
* ```js
|
* const input = tf.tensor1d([1, 1, 1, 1, 1])
|
* tf.signal.stft(input, 3, 1).print();
|
* ```
|
* @param signal 1-dimensional real value tensor.
|
* @param frameLength The window length of samples.
|
* @param frameStep The number of samples to step.
|
* @param fftLength The size of the FFT to apply.
|
* @param windowFn A callable that takes a window length and returns 1-d tensor.
|
*/
|
/**
|
* @doc {heading: 'Operations', subheading: 'Signal', namespace: 'signal'}
|
*/
|
function stft_(
|
signal: Tensor1D, frameLength: number, frameStep: number,
|
fftLength?: number,
|
windowFn: (length: number) => Tensor1D = hannWindow): Tensor {
|
if (fftLength == null) {
|
fftLength = enclosingPowerOfTwo(frameLength);
|
}
|
const framedSignal = frame(signal, frameLength, frameStep);
|
const windowedSignal = mul(framedSignal, windowFn(frameLength));
|
const output: Tensor[] = [];
|
for (let i = 0; i < framedSignal.shape[0]; i++) {
|
output.push(rfft(windowedSignal.slice([i, 0], [1, frameLength]),
|
fftLength));
|
}
|
return concat(output);
|
}
|
|
function enclosingPowerOfTwo(value: number) {
|
// Return 2**N for integer N such that 2**N >= value.
|
return Math.floor(Math.pow(2, Math.ceil(Math.log(value) / Math.log(2.0))));
|
}
|
|
function cosineWindow(windowLength: number, a: number, b: number): Tensor1D {
|
const even = 1 - windowLength % 2;
|
const newValues = new Float32Array(windowLength);
|
for (let i = 0; i < windowLength; ++i) {
|
const cosArg = (2.0 * Math.PI * i) / (windowLength + even - 1);
|
newValues[i] = a - b * Math.cos(cosArg);
|
}
|
return tensor1d(newValues, 'float32');
|
}
|
|
export const hannWindow = op({hannWindow_});
|
export const hammingWindow = op({hammingWindow_});
|
export const frame = op({frame_});
|
export const stft = op({stft_});
|