/**
|
* @license
|
* Copyright 2018 Google Inc. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
|
import {ENGINE} from '../engine';
|
import {customGrad} from '../gradients';
|
import {Tensor} from '../tensor';
|
import {GradSaveFunc} from '../tensor_types';
|
import {convertToTensor} from '../tensor_util_env';
|
import {TensorLike} from '../types';
|
|
import {op} from './operation';
|
|
/**
|
* Computes the softmax normalized vector given the logits.
|
*
|
* ```js
|
* const a = tf.tensor1d([1, 2, 3]);
|
*
|
* a.softmax().print(); // or tf.softmax(a)
|
* ```
|
*
|
* ```js
|
* const a = tf.tensor2d([2, 4, 6, 1, 2, 3], [2, 3]);
|
*
|
* a.softmax().print(); // or tf.softmax(a)
|
* ```
|
*
|
* @param logits The logits array.
|
* @param dim The dimension softmax would be performed on. Defaults to `-1`
|
* which indicates the last dimension.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Normalization'} */
|
function softmax_<T extends Tensor>(logits: T|TensorLike, dim = -1): T {
|
const $logits = convertToTensor(logits, 'logits', 'softmax', 'float32');
|
|
if (dim === -1) {
|
dim = $logits.rank - 1;
|
}
|
if (dim !== $logits.rank - 1) {
|
throw Error(
|
'Softmax along a non-last dimension is not yet supported. ' +
|
`Logits was rank ${$logits.rank} and dim was ${dim}`);
|
}
|
|
const inputsToSave: Tensor[] = [];
|
const outputsToSave = [true];
|
|
return ENGINE.runKernelFunc(
|
(backend, save) => {
|
const y = backend.softmax($logits, dim);
|
save([y]);
|
return y;
|
},
|
{logits: $logits},
|
(dy: T, saved: Tensor[]) => {
|
const [y] = saved;
|
const dyTimesY = dy.mul(y);
|
const keepDims = true;
|
|
return {
|
logits: () => dyTimesY.sub(dyTimesY.sum([dim], keepDims).mul(y))
|
};
|
},
|
'Softmax', {dim}, inputsToSave, outputsToSave);
|
}
|
|
/**
|
* Computes the log softmax.
|
*
|
* ```js
|
* const a = tf.tensor1d([1, 2, 3]);
|
*
|
* a.logSoftmax().print(); // or tf.logSoftmax(a)
|
* ```
|
*
|
* ```js
|
* const a = tf.tensor2d([2, 4, 6, 1, 2, 3], [2, 3]);
|
*
|
* a.logSoftmax().print(); // or tf.logSoftmax(a)
|
* ```
|
*
|
* @param logits The logits array.
|
* @param axis The dimension softmax would be performed on. Defaults to `-1`
|
* which indicates the last dimension.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Normalization'} */
|
function logSoftmax_<T extends Tensor>(logits: T|TensorLike, axis = -1): T {
|
const $logits = convertToTensor(logits, 'logits', 'logSoftmax');
|
|
if (axis === -1) {
|
axis = $logits.rank - 1;
|
}
|
if (axis !== $logits.rank - 1) {
|
throw Error(
|
'Log Softmax along a non-last dimension is not yet supported. ' +
|
`Logits was rank ${$logits.rank} and axis was ${axis}`);
|
}
|
|
const customOp = customGrad((logits: Tensor, save: GradSaveFunc) => {
|
const keepDims = true;
|
const xMax = logits.max(axis, true);
|
const shifted = logits.sub(xMax);
|
const value =
|
shifted.toFloat().sub(shifted.exp().sum(axis, keepDims).log());
|
save([value]);
|
const gradFunc = (dy: T, saved: Tensor[]) => {
|
const [value] = saved;
|
const softmax = value.exp();
|
return dy.sub(dy.sum(axis, keepDims).mul(softmax));
|
};
|
|
return {value, gradFunc};
|
});
|
|
return customOp($logits) as T;
|
}
|
|
export const softmax = op({softmax_});
|
export const logSoftmax = op({logSoftmax_});
|