/**
|
* @license
|
* Copyright 2018 Google Inc. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
import {Tensor} from '../tensor';
|
|
/**
|
* Validate sparseToDense inputs.
|
*
|
* @param sparseIndices A 0-D, 1-D, or 2-D Tensor of type int32.
|
* sparseIndices[i] contains the complete index where sparseValues[i] will be
|
* placed.
|
* @param sparseValues A 0-D or 1-D Tensor. Values
|
* corresponding to each row of sparseIndices, or a scalar value to be used for
|
* all sparse indices.
|
* @param outputShape number[]. Shape of the dense output tensor.
|
* @param validateIndices boolean. indice validation is not supported, error
|
* will be thrown if it is set.
|
*/
|
export function validateInput(
|
sparseIndices: Tensor, sparseValues: Tensor, outputShape: number[],
|
defaultValues: Tensor) {
|
if (sparseIndices.dtype !== 'int32') {
|
throw new Error(
|
'tf.sparseToDense() expects the indices to be int32 type,' +
|
` but the dtype was ${sparseIndices.dtype}.`);
|
}
|
if (sparseIndices.rank > 2) {
|
throw new Error(
|
'sparseIndices should be a scalar, vector, or matrix,' +
|
` but got shape ${sparseIndices.shape}.`);
|
}
|
|
const numElems = sparseIndices.rank > 0 ? sparseIndices.shape[0] : 1;
|
const numDims = sparseIndices.rank > 1 ? sparseIndices.shape[1] : 1;
|
|
if (outputShape.length !== numDims) {
|
throw new Error(
|
'outputShape has incorrect number of elements:,' +
|
` ${outputShape.length}, should be: ${numDims}.`);
|
}
|
|
const numValues = sparseValues.size;
|
if (!(sparseValues.rank === 0 ||
|
sparseValues.rank === 1 && numValues === numElems)) {
|
throw new Error(
|
'sparseValues has incorrect shape ' +
|
`${sparseValues.shape}, should be [] or [${numElems}]`);
|
}
|
|
if (sparseValues.dtype !== defaultValues.dtype) {
|
throw new Error('sparseValues.dtype must match defaultValues.dtype');
|
}
|
}
|