/**
|
* @license
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
|
import {ENGINE, ForwardFunc} from '../engine';
|
import {SquaredDifference, SquaredDifferenceInputs} from '../kernel_names';
|
import {Tensor} from '../tensor';
|
import {NamedTensorMap} from '../tensor_types';
|
import {makeTypesMatch} from '../tensor_util';
|
import {convertToTensor} from '../tensor_util_env';
|
import {TensorLike} from '../types';
|
|
import {assertAndGetBroadcastShape} from './broadcast_util';
|
import {op} from './operation';
|
import {scalar} from './tensor_ops';
|
|
/**
|
* Returns (a - b) * (a - b) element-wise.
|
* Supports broadcasting.
|
*
|
* We also expose `tf.squaredDifferenceStrict` which has the same signature as
|
* this op and asserts that `a` and `b` are the same shape (does not
|
* broadcast).
|
*
|
* ```js
|
* const a = tf.tensor1d([1, 4, 3, 16]);
|
* const b = tf.tensor1d([1, 2, 9, 4]);
|
*
|
* a.squaredDifference(b).print(); // or tf.squaredDifference(a, b)
|
* ```
|
*
|
* ```js
|
* // Broadcast squared difference a with b.
|
* const a = tf.tensor1d([2, 4, 6, 8]);
|
* const b = tf.scalar(5);
|
*
|
* a.squaredDifference(b).print(); // or tf.squaredDifference(a, b)
|
* ```
|
*
|
* @param a The first tensor.
|
* @param b The second tensor. Must have the same type as `a`.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Arithmetic'} */
|
function squaredDifference_<T extends Tensor>(
|
a: Tensor|TensorLike, b: Tensor|TensorLike): T {
|
let $a = convertToTensor(a, 'a', 'squaredDifference');
|
let $b = convertToTensor(b, 'b', 'squaredDifference');
|
[$a, $b] = makeTypesMatch($a, $b);
|
|
assertAndGetBroadcastShape($a.shape, $b.shape);
|
const der = (dy: Tensor, saved: Tensor[]) => {
|
const [$a, $b] = saved;
|
const two = scalar(2);
|
const derA = () => dy.mul($a.sub($b).mul(two));
|
const derB = () => dy.mul($b.sub($a).mul(two));
|
return {a: derA, b: derB};
|
};
|
const forward: ForwardFunc<Tensor> = (backend, save) => {
|
const res = backend.squaredDifference($a, $b);
|
save([$a, $b]);
|
return res;
|
};
|
|
const inputs: SquaredDifferenceInputs = {a: $a, b: $b};
|
const attrs = {};
|
|
const inputsToSave = [$a, $b];
|
const outputToSave: boolean[] = [];
|
return ENGINE.runKernelFunc(
|
forward, inputs as unknown as NamedTensorMap, der,
|
SquaredDifference, attrs, inputsToSave, outputToSave) as T;
|
}
|
|
export const squaredDifference = op({squaredDifference_});
|