/**
|
* @license
|
* Copyright 2018 Google Inc. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
|
import {ENGINE} from '../engine';
|
import {Tensor} from '../tensor';
|
import {convertToTensor} from '../tensor_util_env';
|
import {TensorLike} from '../types';
|
|
import {op} from './operation';
|
import {slice} from './slice';
|
import {computeOutShape, maskToAxes, startForAxis, stopForAxis} from './slice_util';
|
|
/**
|
* Extracts a strided slice of a tensor.
|
*
|
* Roughly speaking, this op extracts a slice of size (end-begin)/stride from
|
* the given input tensor (x). Starting at the location specified by begin the
|
* slice continues by adding stride to the index until all dimensions are not
|
* less than end. Note that a stride can be negative, which causes a reverse
|
* slice.
|
*
|
* ```js
|
* const t = tf.tensor3d([1, 1, 1 ,2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6],
|
* [3, 2, 3]);
|
* t.stridedSlice([1, 0, 0], [2, 1, 3], [1, 1, 1]).print() // [[[3, 3, 3]]]
|
* t.stridedSlice([1, 0, 0], [2, 2, 3], [1, 1, 1]).print() // [[[3, 3, 3],
|
* // [4, 4, 4]]]
|
* t.stridedSlice([1, -1, 0], [2, -3, 3], [1, -1, 1]).print() // [[[4, 4, 4],
|
* // [3, 3, 3]]]
|
* ```
|
*
|
* @param x The tensor to stride slice.
|
* @param begin The coordinates to start the slice from.
|
* @param end: The coordinates to end the slice at.
|
* @param strides: The size of the slice.
|
* @param beginMask: If the ith bit of beginMask is set, begin[i] is ignored
|
* and the fullest possible range in that dimension is used instead.
|
* @param endMask: If the ith bit of endMask is set, end[i] is ignored
|
* and the fullest possible range in that dimension is used instead.
|
* @param shrinkAxisMask: a bitmask where bit i implies that
|
* the ith specification should shrink the dimensionality. begin and end must
|
* imply a slice of size 1 in the dimension.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Slicing and Joining'} */
|
function stridedSlice_(
|
x: Tensor|TensorLike, begin: number[], end: number[], strides?: number[],
|
beginMask = 0, endMask = 0, ellipsisMask = 0, newAxisMask = 0,
|
shrinkAxisMask = 0): Tensor {
|
if (strides == null) {
|
strides = new Array(begin.length);
|
}
|
if (ellipsisMask !== 0) {
|
throw new Error('ellipsis mask is not yet supported');
|
}
|
let $x = convertToTensor(x, 'x', 'stridedSlice');
|
|
// Expand the dims of x based on the newAxisMask.
|
const expandAxes = maskToAxes(newAxisMask);
|
const newShape = $x.shape.slice();
|
expandAxes.forEach(axis => {
|
begin[axis] = 0;
|
end[axis] = 1;
|
newShape.splice(axis, 0, 1);
|
});
|
$x = $x.reshape(newShape);
|
|
// Normalize the start, end and strides.
|
for (let axis = 0; axis < $x.rank; axis++) {
|
begin[axis] = startForAxis(beginMask, begin, strides, $x.shape, axis);
|
end[axis] = stopForAxis(endMask, end, strides, $x.shape, axis);
|
strides[axis] = strides[axis] || 1;
|
}
|
|
const shrinkAxes = maskToAxes(shrinkAxisMask);
|
// Adjust the ends based on the shrink mask.
|
shrinkAxes.forEach(axis => {
|
end[axis] = begin[axis] + 1;
|
strides[axis] = 1;
|
});
|
|
// Figure out the output shape.
|
const size = computeOutShape(begin, end, strides);
|
// Remove the axes based on shrinkMask.
|
const outShape = size.filter((_, axis) => shrinkAxes.indexOf(axis) === -1);
|
|
const nonStrided = strides.every(v => v === 1);
|
if (nonStrided) {
|
return slice($x, begin, size).reshape(outShape);
|
}
|
const res = ENGINE.runKernelFunc(
|
backend => backend.stridedSlice($x, begin, end, strides), {$x});
|
return res.reshape(outShape);
|
}
|
|
export const stridedSlice = op({stridedSlice_});
|