/**
|
* @license
|
* Copyright 2017 Google Inc. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
|
import {env} from './environment';
|
|
import {DataType, DataTypeMap, FlatVector, NumericDataType, RecursiveArray, TensorLike, TypedArray} from './types';
|
|
/**
|
* Shuffles the array in-place using Fisher-Yates algorithm.
|
*
|
* ```js
|
* const a = [1, 2, 3, 4, 5];
|
* tf.util.shuffle(a);
|
* console.log(a);
|
* ```
|
*
|
* @param array The array to shuffle in-place.
|
*/
|
/** @doc {heading: 'Util', namespace: 'util'} */
|
// tslint:disable-next-line:no-any
|
export function shuffle(array: any[]|Uint32Array|Int32Array|
|
Float32Array): void {
|
let counter = array.length;
|
let temp = 0;
|
let index = 0;
|
// While there are elements in the array
|
while (counter > 0) {
|
// Pick a random index
|
index = (Math.random() * counter) | 0;
|
// Decrease counter by 1
|
counter--;
|
// And swap the last element with it
|
temp = array[counter];
|
array[counter] = array[index];
|
array[index] = temp;
|
}
|
}
|
|
/** Clamps a value to a specified range. */
|
export function clamp(min: number, x: number, max: number): number {
|
return Math.max(min, Math.min(x, max));
|
}
|
|
export function nearestLargerEven(val: number): number {
|
return val % 2 === 0 ? val : val + 1;
|
}
|
|
export function sum(arr: number[]): number {
|
let sum = 0;
|
for (let i = 0; i < arr.length; i++) {
|
sum += arr[i];
|
}
|
return sum;
|
}
|
|
/**
|
* Returns a sample from a uniform [a, b) distribution.
|
*
|
* @param a The minimum support (inclusive).
|
* @param b The maximum support (exclusive).
|
* @return A pseudorandom number on the half-open interval [a,b).
|
*/
|
export function randUniform(a: number, b: number) {
|
const r = Math.random();
|
return (b * r) + (1 - r) * a;
|
}
|
|
/** Returns the squared Euclidean distance between two vectors. */
|
export function distSquared(a: FlatVector, b: FlatVector): number {
|
let result = 0;
|
for (let i = 0; i < a.length; i++) {
|
const diff = Number(a[i]) - Number(b[i]);
|
result += diff * diff;
|
}
|
return result;
|
}
|
|
/**
|
* Asserts that the expression is true. Otherwise throws an error with the
|
* provided message.
|
*
|
* ```js
|
* const x = 2;
|
* tf.util.assert(x === 2, 'x is not 2');
|
* ```
|
*
|
* @param expr The expression to assert (as a boolean).
|
* @param msg A function that returns the message to report when throwing an
|
* error. We use a function for performance reasons.
|
*/
|
/** @doc {heading: 'Util', namespace: 'util'} */
|
export function assert(expr: boolean, msg: () => string) {
|
if (!expr) {
|
throw new Error(typeof msg === 'string' ? msg : msg());
|
}
|
}
|
|
export function assertShapesMatch(
|
shapeA: number[], shapeB: number[], errorMessagePrefix = ''): void {
|
assert(
|
arraysEqual(shapeA, shapeB),
|
() => errorMessagePrefix + ` Shapes ${shapeA} and ${shapeB} must match`);
|
}
|
|
export function assertNonNull(a: TensorLike): void {
|
assert(
|
a != null,
|
() => `The input to the tensor constructor must be a non-null value.`);
|
}
|
|
// NOTE: We explicitly type out what T extends instead of any so that
|
// util.flatten on a nested array of number doesn't try to infer T as a
|
// number[][], causing us to explicitly type util.flatten<number>().
|
/**
|
* Flattens an arbitrarily nested array.
|
*
|
* ```js
|
* const a = [[1, 2], [3, 4], [5, [6, [7]]]];
|
* const flat = tf.util.flatten(a);
|
* console.log(flat);
|
* ```
|
*
|
* @param arr The nested array to flatten.
|
* @param result The destination array which holds the elements.
|
* @param skipTypedArray If true, avoids flattening the typed arrays. Defaults
|
* to false.
|
*/
|
/** @doc {heading: 'Util', namespace: 'util'} */
|
export function
|
flatten<T extends number|boolean|string|Promise<number>|TypedArray>(
|
arr: T|RecursiveArray<T>, result: T[] = [], skipTypedArray = false): T[] {
|
if (result == null) {
|
result = [];
|
}
|
if (Array.isArray(arr) || isTypedArray(arr) && !skipTypedArray) {
|
for (let i = 0; i < arr.length; ++i) {
|
flatten(arr[i], result, skipTypedArray);
|
}
|
} else {
|
result.push(arr as T);
|
}
|
return result;
|
}
|
|
/**
|
* Returns the size (number of elements) of the tensor given its shape.
|
*
|
* ```js
|
* const shape = [3, 4, 2];
|
* const size = tf.util.sizeFromShape(shape);
|
* console.log(size);
|
* ```
|
*/
|
/** @doc {heading: 'Util', namespace: 'util'} */
|
export function sizeFromShape(shape: number[]): number {
|
if (shape.length === 0) {
|
// Scalar.
|
return 1;
|
}
|
let size = shape[0];
|
for (let i = 1; i < shape.length; i++) {
|
size *= shape[i];
|
}
|
return size;
|
}
|
|
export function isScalarShape(shape: number[]): boolean {
|
return shape.length === 0;
|
}
|
|
export function arraysEqual(n1: FlatVector, n2: FlatVector) {
|
if (n1 === n2) {
|
return true;
|
}
|
if (n1 == null || n2 == null) {
|
return false;
|
}
|
|
if (n1.length !== n2.length) {
|
return false;
|
}
|
for (let i = 0; i < n1.length; i++) {
|
if (n1[i] !== n2[i]) {
|
return false;
|
}
|
}
|
return true;
|
}
|
|
export function isInt(a: number): boolean {
|
return a % 1 === 0;
|
}
|
|
export function tanh(x: number): number {
|
// tslint:disable-next-line:no-any
|
if ((Math as any).tanh != null) {
|
// tslint:disable-next-line:no-any
|
return (Math as any).tanh(x);
|
}
|
if (x === Infinity) {
|
return 1;
|
} else if (x === -Infinity) {
|
return -1;
|
} else {
|
const e2x = Math.exp(2 * x);
|
return (e2x - 1) / (e2x + 1);
|
}
|
}
|
|
export function sizeToSquarishShape(size: number): [number, number] {
|
const width = Math.ceil(Math.sqrt(size));
|
return [width, Math.ceil(size / width)];
|
}
|
|
/**
|
* Creates a new array with randomized indicies to a given quantity.
|
*
|
* ```js
|
* const randomTen = tf.util.createShuffledIndices(10);
|
* console.log(randomTen);
|
* ```
|
*
|
* @param number Quantity of how many shuffled indicies to create.
|
*/
|
/** @doc {heading: 'Util', namespace: 'util'} */
|
export function createShuffledIndices(n: number): Uint32Array {
|
const shuffledIndices = new Uint32Array(n);
|
for (let i = 0; i < n; ++i) {
|
shuffledIndices[i] = i;
|
}
|
shuffle(shuffledIndices);
|
return shuffledIndices;
|
}
|
|
export function rightPad(a: string, size: number): string {
|
if (size <= a.length) {
|
return a;
|
}
|
return a + ' '.repeat(size - a.length);
|
}
|
|
export function repeatedTry(
|
checkFn: () => boolean, delayFn = (counter: number) => 0,
|
maxCounter?: number): Promise<void> {
|
return new Promise<void>((resolve, reject) => {
|
let tryCount = 0;
|
|
const tryFn = () => {
|
if (checkFn()) {
|
resolve();
|
return;
|
}
|
|
tryCount++;
|
|
const nextBackoff = delayFn(tryCount);
|
|
if (maxCounter != null && tryCount >= maxCounter) {
|
reject();
|
return;
|
}
|
setTimeout(tryFn, nextBackoff);
|
};
|
|
tryFn();
|
});
|
}
|
|
/**
|
* Given the full size of the array and a shape that may contain -1 as the
|
* implicit dimension, returns the inferred shape where -1 is replaced.
|
* E.g. For shape=[2, -1, 3] and size=24, it will return [2, 4, 3].
|
*
|
* @param shape The shape, which may contain -1 in some dimension.
|
* @param size The full size (number of elements) of the array.
|
* @return The inferred shape where -1 is replaced with the inferred size.
|
*/
|
export function inferFromImplicitShape(
|
shape: number[], size: number): number[] {
|
let shapeProd = 1;
|
let implicitIdx = -1;
|
|
for (let i = 0; i < shape.length; ++i) {
|
if (shape[i] >= 0) {
|
shapeProd *= shape[i];
|
} else if (shape[i] === -1) {
|
if (implicitIdx !== -1) {
|
throw Error(
|
`Shapes can only have 1 implicit size. ` +
|
`Found -1 at dim ${implicitIdx} and dim ${i}`);
|
}
|
implicitIdx = i;
|
} else if (shape[i] < 0) {
|
throw Error(`Shapes can not be < 0. Found ${shape[i]} at dim ${i}`);
|
}
|
}
|
|
if (implicitIdx === -1) {
|
if (size > 0 && size !== shapeProd) {
|
throw Error(`Size(${size}) must match the product of shape ${shape}`);
|
}
|
return shape;
|
}
|
|
if (shapeProd === 0) {
|
throw Error(
|
`Cannot infer the missing size in [${shape}] when ` +
|
`there are 0 elements`);
|
}
|
if (size % shapeProd !== 0) {
|
throw Error(
|
`The implicit shape can't be a fractional number. ` +
|
`Got ${size} / ${shapeProd}`);
|
}
|
|
const newShape = shape.slice();
|
newShape[implicitIdx] = size / shapeProd;
|
return newShape;
|
}
|
|
export function parseAxisParam(
|
axis: number|number[], shape: number[]): number[] {
|
const rank = shape.length;
|
|
// Normalize input
|
axis = axis == null ? shape.map((s, i) => i) : [].concat(axis);
|
|
// Check for valid range
|
assert(
|
axis.every(ax => ax >= -rank && ax < rank),
|
() =>
|
`All values in axis param must be in range [-${rank}, ${rank}) but ` +
|
`got axis ${axis}`);
|
|
// Check for only integers
|
assert(
|
axis.every(ax => isInt(ax)),
|
() => `All values in axis param must be integers but ` +
|
`got axis ${axis}`);
|
|
// Handle negative axis.
|
return axis.map(a => a < 0 ? rank + a : a);
|
}
|
|
/** Reduces the shape by removing all dimensions of shape 1. */
|
export function squeezeShape(shape: number[], axis?: number[]):
|
{newShape: number[], keptDims: number[]} {
|
const newShape: number[] = [];
|
const keptDims: number[] = [];
|
const isEmptyArray = axis != null && Array.isArray(axis) && axis.length === 0;
|
const axes = (axis == null || isEmptyArray) ?
|
null :
|
parseAxisParam(axis, shape).sort();
|
let j = 0;
|
for (let i = 0; i < shape.length; ++i) {
|
if (axes != null) {
|
if (axes[j] === i && shape[i] !== 1) {
|
throw new Error(
|
`Can't squeeze axis ${i} since its dim '${shape[i]}' is not 1`);
|
}
|
if ((axes[j] == null || axes[j] > i) && shape[i] === 1) {
|
newShape.push(shape[i]);
|
keptDims.push(i);
|
}
|
if (axes[j] <= i) {
|
j++;
|
}
|
}
|
if (shape[i] !== 1) {
|
newShape.push(shape[i]);
|
keptDims.push(i);
|
}
|
}
|
return {newShape, keptDims};
|
}
|
|
export function getTypedArrayFromDType<D extends NumericDataType>(
|
dtype: D, size: number): DataTypeMap[D] {
|
let values = null;
|
if (dtype == null || dtype === 'float32') {
|
values = new Float32Array(size);
|
} else if (dtype === 'int32') {
|
values = new Int32Array(size);
|
} else if (dtype === 'bool') {
|
values = new Uint8Array(size);
|
} else {
|
throw new Error(`Unknown data type ${dtype}`);
|
}
|
return values as DataTypeMap[D];
|
}
|
|
export function getArrayFromDType<D extends DataType>(
|
dtype: D, size: number): DataTypeMap[D] {
|
let values = null;
|
if (dtype == null || dtype === 'float32') {
|
values = new Float32Array(size);
|
} else if (dtype === 'int32') {
|
values = new Int32Array(size);
|
} else if (dtype === 'bool') {
|
values = new Uint8Array(size);
|
} else if (dtype === 'string') {
|
values = new Array<'string'>(size);
|
} else {
|
throw new Error(`Unknown data type ${dtype}`);
|
}
|
return values as DataTypeMap[D];
|
}
|
|
export function checkConversionForErrors<D extends DataType>(
|
vals: DataTypeMap[D]|number[], dtype: D): void {
|
for (let i = 0; i < vals.length; i++) {
|
const num = vals[i] as number;
|
if (isNaN(num) || !isFinite(num)) {
|
throw Error(`A tensor of type ${dtype} being uploaded contains ${num}.`);
|
}
|
}
|
}
|
|
/** Returns true if the dtype is valid. */
|
export function isValidDtype(dtype: DataType): boolean {
|
return dtype === 'bool' || dtype === 'complex64' || dtype === 'float32' ||
|
dtype === 'int32' || dtype === 'string';
|
}
|
|
/**
|
* Returns true if the new type can't encode the old type without loss of
|
* precision.
|
*/
|
export function hasEncodingLoss(oldType: DataType, newType: DataType): boolean {
|
if (newType === 'complex64') {
|
return false;
|
}
|
if (newType === 'float32' && oldType !== 'complex64') {
|
return false;
|
}
|
if (newType === 'int32' && oldType !== 'float32' && oldType !== 'complex64') {
|
return false;
|
}
|
if (newType === 'bool' && oldType === 'bool') {
|
return false;
|
}
|
return true;
|
}
|
|
export function isTypedArray(a: {}): a is Float32Array|Int32Array|Uint8Array {
|
return a instanceof Float32Array || a instanceof Int32Array ||
|
a instanceof Uint8Array;
|
}
|
|
export function bytesPerElement(dtype: DataType): number {
|
if (dtype === 'float32' || dtype === 'int32') {
|
return 4;
|
} else if (dtype === 'complex64') {
|
return 8;
|
} else if (dtype === 'bool') {
|
return 1;
|
} else {
|
throw new Error(`Unknown dtype ${dtype}`);
|
}
|
}
|
|
/**
|
* Returns the approximate number of bytes allocated in the string array - 2
|
* bytes per character. Computing the exact bytes for a native string in JS is
|
* not possible since it depends on the encoding of the html page that serves
|
* the website.
|
*/
|
export function bytesFromStringArray(arr: Uint8Array[]): number {
|
if (arr == null) {
|
return 0;
|
}
|
let bytes = 0;
|
arr.forEach(x => bytes += x.length);
|
return bytes;
|
}
|
|
/** Returns true if the value is a string. */
|
export function isString(value: {}): value is string {
|
return typeof value === 'string' || value instanceof String;
|
}
|
|
export function isBoolean(value: {}): boolean {
|
return typeof value === 'boolean';
|
}
|
|
export function isNumber(value: {}): boolean {
|
return typeof value === 'number';
|
}
|
|
export function inferDtype(values: TensorLike): DataType {
|
if (Array.isArray(values)) {
|
return inferDtype(values[0]);
|
}
|
if (values instanceof Float32Array) {
|
return 'float32';
|
} else if (values instanceof Int32Array || values instanceof Uint8Array) {
|
return 'int32';
|
} else if (isNumber(values)) {
|
return 'float32';
|
} else if (isString(values)) {
|
return 'string';
|
} else if (isBoolean(values)) {
|
return 'bool';
|
}
|
return 'float32';
|
}
|
|
export function isFunction(f: Function) {
|
return !!(f && f.constructor && f.call && f.apply);
|
}
|
|
export function nearestDivisor(size: number, start: number): number {
|
for (let i = start; i < size; ++i) {
|
if (size % i === 0) {
|
return i;
|
}
|
}
|
return size;
|
}
|
|
export function computeStrides(shape: number[]): number[] {
|
const rank = shape.length;
|
if (rank < 2) {
|
return [];
|
}
|
|
// Last dimension has implicit stride of 1, thus having D-1 (instead of D)
|
// strides.
|
const strides = new Array(rank - 1);
|
strides[rank - 2] = shape[rank - 1];
|
for (let i = rank - 3; i >= 0; --i) {
|
strides[i] = strides[i + 1] * shape[i + 1];
|
}
|
return strides;
|
}
|
|
export function toTypedArray(
|
a: TensorLike, dtype: DataType, debugMode: boolean): TypedArray {
|
if (dtype === 'string') {
|
throw new Error('Cannot convert a string[] to a TypedArray');
|
}
|
if (Array.isArray(a)) {
|
a = flatten(a);
|
}
|
if (debugMode) {
|
checkConversionForErrors(a as number[], dtype);
|
}
|
if (noConversionNeeded(a, dtype)) {
|
return a as TypedArray;
|
}
|
if (dtype == null || dtype === 'float32' || dtype === 'complex64') {
|
return new Float32Array(a as number[]);
|
} else if (dtype === 'int32') {
|
return new Int32Array(a as number[]);
|
} else if (dtype === 'bool') {
|
const bool = new Uint8Array((a as number[]).length);
|
for (let i = 0; i < bool.length; ++i) {
|
if (Math.round((a as number[])[i]) !== 0) {
|
bool[i] = 1;
|
}
|
}
|
return bool;
|
} else {
|
throw new Error(`Unknown data type ${dtype}`);
|
}
|
}
|
|
function createNestedArray(offset: number, shape: number[], a: TypedArray) {
|
const ret = new Array();
|
if (shape.length === 1) {
|
const d = shape[0];
|
for (let i = 0; i < d; i++) {
|
ret[i] = a[offset + i];
|
}
|
} else {
|
const d = shape[0];
|
const rest = shape.slice(1);
|
const len = rest.reduce((acc, c) => acc * c);
|
for (let i = 0; i < d; i++) {
|
ret[i] = createNestedArray(offset + i * len, rest, a);
|
}
|
}
|
return ret;
|
}
|
|
// Provide a nested array of TypedArray in given shape.
|
export function toNestedArray(shape: number[], a: TypedArray) {
|
if (shape.length === 0) {
|
// Scalar type should return a single number.
|
return a[0];
|
}
|
const size = shape.reduce((acc, c) => acc * c);
|
if (size === 0) {
|
// A tensor with shape zero should be turned into empty list.
|
return [];
|
}
|
if (size !== a.length) {
|
throw new Error(`[${shape}] does not match the input size.`);
|
}
|
|
return createNestedArray(0, shape, a);
|
}
|
|
function noConversionNeeded(a: TensorLike, dtype: DataType): boolean {
|
return (a instanceof Float32Array && dtype === 'float32') ||
|
(a instanceof Int32Array && dtype === 'int32') ||
|
(a instanceof Uint8Array && dtype === 'bool');
|
}
|
|
export function makeOnesTypedArray<D extends DataType>(
|
size: number, dtype: D): DataTypeMap[D] {
|
const array = makeZerosTypedArray(size, dtype);
|
for (let i = 0; i < array.length; i++) {
|
array[i] = 1;
|
}
|
return array;
|
}
|
|
export function makeZerosTypedArray<D extends DataType>(
|
size: number, dtype: D): DataTypeMap[D] {
|
if (dtype == null || dtype === 'float32' || dtype === 'complex64') {
|
return new Float32Array(size) as DataTypeMap[D];
|
} else if (dtype === 'int32') {
|
return new Int32Array(size) as DataTypeMap[D];
|
} else if (dtype === 'bool') {
|
return new Uint8Array(size) as DataTypeMap[D];
|
} else {
|
throw new Error(`Unknown data type ${dtype}`);
|
}
|
}
|
|
/**
|
* Returns the current high-resolution time in milliseconds relative to an
|
* arbitrary time in the past. It works across different platforms (node.js,
|
* browsers).
|
*
|
* ```js
|
* console.log(tf.util.now());
|
* ```
|
*/
|
/** @doc {heading: 'Util', namespace: 'util'} */
|
export function now(): number {
|
return env().platform.now();
|
}
|
|
export function assertNonNegativeIntegerDimensions(shape: number[]) {
|
shape.forEach(dimSize => {
|
assert(
|
Number.isInteger(dimSize) && dimSize >= 0,
|
() =>
|
`Tensor must have a shape comprised of positive integers but got ` +
|
`shape [${shape}].`);
|
});
|
}
|
|
/**
|
* Returns a platform-specific implementation of
|
* [`fetch`](https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API).
|
*
|
* If `fetch` is defined on the global object (`window`, `process`, etc.),
|
* `tf.util.fetch` returns that function.
|
*
|
* If not, `tf.util.fetch` returns a platform-specific solution.
|
*
|
* ```js
|
* const resource = await tf.util.fetch('https://unpkg.com/@tensorflow/tfjs');
|
* // handle response
|
* ```
|
*/
|
/** @doc {heading: 'Util'} */
|
export function fetch(
|
path: string, requestInits?: RequestInit): Promise<Response> {
|
return env().platform.fetch(path, requestInits);
|
}
|
|
/**
|
* Encodes the provided string into bytes using the provided encoding scheme.
|
*
|
* @param s The string to encode.
|
* @param encoding The encoding scheme. Defaults to utf-8.
|
*
|
*/
|
/** @doc {heading: 'Util'} */
|
export function encodeString(s: string, encoding = 'utf-8'): Uint8Array {
|
encoding = encoding || 'utf-8';
|
return env().platform.encode(s, encoding);
|
}
|
|
/**
|
* Decodes the provided bytes into a string using the provided encoding scheme.
|
* @param bytes The bytes to decode.
|
*
|
* @param encoding The encoding scheme. Defaults to utf-8.
|
*/
|
/** @doc {heading: 'Util'} */
|
export function decodeString(bytes: Uint8Array, encoding = 'utf-8'): string {
|
encoding = encoding || 'utf-8';
|
return env().platform.decode(bytes, encoding);
|
}
|
|
/**
|
* Computes flat index for a given location (multidimentionsal index) in a
|
* Tensor/multidimensional array.
|
*
|
* @param locs Location in the tensor.
|
* @param rank Rank of the tensor.
|
* @param strides Tensor strides.
|
*/
|
export function locToIndex(
|
locs: number[], rank: number, strides: number[]): number {
|
if (rank === 0) {
|
return 0;
|
} else if (rank === 1) {
|
return locs[0];
|
}
|
let index = locs[locs.length - 1];
|
for (let i = 0; i < locs.length - 1; ++i) {
|
index += strides[i] * locs[i];
|
}
|
return index;
|
}
|
|
/**
|
* Computes the location (multidimensional index) in a tensor/multidimentional
|
* array for a given flat index.
|
*
|
* @param index Index in flat array.
|
* @param rank Rank of tensor.
|
* @param strides Strides of tensor.
|
*/
|
export function indexToLoc(
|
index: number, rank: number, strides: number[]): number[] {
|
if (rank === 0) {
|
return [];
|
} else if (rank === 1) {
|
return [index];
|
}
|
const locs: number[] = new Array(rank);
|
for (let i = 0; i < locs.length - 1; ++i) {
|
locs[i] = Math.floor(index / strides[i]);
|
index -= locs[i] * strides[i];
|
}
|
locs[locs.length - 1] = index;
|
return locs;
|
}
|