"use strict";
|
/**
|
* @license
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
Object.defineProperty(exports, "__esModule", { value: true });
|
exports.encodeInt32ArrayAsInt64 = exports.Int64Scalar = void 0;
|
var tfjs_1 = require("@tensorflow/tfjs");
|
var os_1 = require("os");
|
var INT32_MAX = 2147483648;
|
/**
|
* Node.js-specific tensor type: int64-type scalar.
|
*
|
* This class is created for a specific purpose: to support
|
* writing `step`s to TensorBoard via op-kernel bindings.
|
* `step` is required to have an int64 dtype, but TensorFlow.js
|
* (tfjs-core) doesn't have a built-in int64 dtype. This is
|
* related to a lack of `Int64Array` or `Uint64Array` typed
|
* array in basic JavaScript.
|
*
|
* This class is introduced as a workaround.
|
*/
|
var Int64Scalar = /** @class */ (function () {
|
function Int64Scalar(value) {
|
this.value = value;
|
this.dtype = 'int64';
|
this.rank = 1;
|
// The reason why we need to check endianness of the machine here is
|
// negative int64 values and the way in which we represent them
|
// using Int32Arrays in JavaScript. We represent each int64 value with
|
// two consecutive elements of an Int32Array. For positive values,
|
// the high part is simply zero; for negative values, the high part
|
// should be -1. The ordering of the low and high parts assumes
|
// little endian (i.e., least significant digits appear first).
|
// This assumption is checked by the lines below.
|
if (Int64Scalar.endiannessOkay_ == null) {
|
if ((0, os_1.endianness)() !== 'LE') {
|
throw new Error("Int64Scalar does not support endianness of this machine: " +
|
"".concat((0, os_1.endianness)()));
|
}
|
Int64Scalar.endiannessOkay_ = true;
|
}
|
tfjs_1.util.assert(value > -INT32_MAX && value < INT32_MAX - 1, function () {
|
return "Got a value outside of the bound of values supported for int64 " +
|
"dtype ([-".concat(INT32_MAX, ", ").concat(INT32_MAX - 1, "]): ").concat(value);
|
});
|
tfjs_1.util.assert(Number.isInteger(value), function () { return "Expected value to be an integer, but got ".concat(value); });
|
// We use two int32 elements to represent a int64 value. This assumes
|
// little endian, which is checked above.
|
var highPart = value >= 0 ? 0 : -1;
|
var lowPart = value % INT32_MAX;
|
this.valueArray_ = new Int32Array([lowPart, highPart]);
|
}
|
Object.defineProperty(Int64Scalar.prototype, "shape", {
|
get: function () {
|
return [];
|
},
|
enumerable: false,
|
configurable: true
|
});
|
Object.defineProperty(Int64Scalar.prototype, "valueArray", {
|
/** Get the Int32Array that represents the int64 value. */
|
get: function () {
|
return this.valueArray_;
|
},
|
enumerable: false,
|
configurable: true
|
});
|
return Int64Scalar;
|
}());
|
exports.Int64Scalar = Int64Scalar;
|
/**
|
* This method encodes a Int32Array as Int64 layout in order to create TF_INT64
|
* tensor through binding.
|
*/
|
function encodeInt32ArrayAsInt64(value) {
|
if ((0, os_1.endianness)() !== 'LE') {
|
throw new Error("Int64Scalar does not support endianness of this machine: " +
|
"".concat((0, os_1.endianness)()));
|
}
|
var buffer = new Int32Array(value.length * 2);
|
for (var i = 0; i < value.length; i++) {
|
buffer[i * 2] = value[i];
|
}
|
return buffer;
|
}
|
exports.encodeInt32ArrayAsInt64 = encodeInt32ArrayAsInt64;
|