"use strict";
|
/**
|
* @license
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) {
|
function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); }
|
return new (P || (P = Promise))(function (resolve, reject) {
|
function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } }
|
function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } }
|
function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); }
|
step((generator = generator.apply(thisArg, _arguments || [])).next());
|
});
|
};
|
var __generator = (this && this.__generator) || function (thisArg, body) {
|
var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g;
|
return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g;
|
function verb(n) { return function (v) { return step([n, v]); }; }
|
function step(op) {
|
if (f) throw new TypeError("Generator is already executing.");
|
while (g && (g = 0, op[0] && (_ = 0)), _) try {
|
if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t;
|
if (y = 0, t) op = [op[0] & 2, t.value];
|
switch (op[0]) {
|
case 0: case 1: t = op; break;
|
case 4: _.label++; return { value: op[1], done: false };
|
case 5: _.label++; y = op[1]; op = [0]; continue;
|
case 7: op = _.ops.pop(); _.trys.pop(); continue;
|
default:
|
if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; }
|
if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; }
|
if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; }
|
if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; }
|
if (t[2]) _.ops.pop();
|
_.trys.pop(); continue;
|
}
|
op = body.call(thisArg, _);
|
} catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; }
|
if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true };
|
}
|
};
|
Object.defineProperty(exports, "__esModule", { value: true });
|
var tf = require("@tensorflow/tfjs");
|
var tfn = require("../index");
|
// We still need node-fetch so that we can mock the core
|
// tf.env().platform.fetch call and return a valid response.
|
// tslint:disable-next-line:no-require-imports
|
var fetch = require('node-fetch');
|
var OCTET_STREAM_TYPE = 'application/octet-stream';
|
var JSON_TYPE = 'application/json';
|
// Test data;
|
var modelTopology1 = {
|
'class_name': 'Sequential',
|
'keras_version': '2.1.4',
|
'config': [{
|
'class_name': 'Dense',
|
'config': {
|
'kernel_initializer': {
|
'class_name': 'VarianceScaling',
|
'config': {
|
'distribution': 'uniform',
|
'scale': 1.0,
|
'seed': null,
|
'mode': 'fan_avg'
|
}
|
},
|
'name': 'dense',
|
'kernel_constraint': null,
|
'bias_regularizer': null,
|
'bias_constraint': null,
|
'dtype': 'float32',
|
'activation': 'linear',
|
'trainable': true,
|
'kernel_regularizer': null,
|
'bias_initializer': { 'class_name': 'Zeros', 'config': {} },
|
'units': 1,
|
'batch_input_shape': [null, 3],
|
'use_bias': true,
|
'activity_regularizer': null
|
}
|
}],
|
'backend': 'tensorflow'
|
};
|
describe('nodeHTTPRequest-load', function () {
|
var requestInits;
|
var setupFakeWeightFiles = function (fileBufferMap) {
|
spyOn(tf.env().platform, 'fetch')
|
.and.callFake(function (path, init) {
|
return new Promise(function (resolve, reject) {
|
var contentType = '';
|
if (path.endsWith('model.json')) {
|
contentType = JSON_TYPE;
|
}
|
else if (path.endsWith('weightfile0') || path.endsWith('weightfile1')) {
|
contentType = OCTET_STREAM_TYPE;
|
}
|
else {
|
reject(new Error("Invalid path: ".concat(path)));
|
}
|
requestInits.push(init);
|
resolve(new fetch.Response(fileBufferMap[path], { 'headers': { 'Content-Type': contentType } }));
|
});
|
});
|
};
|
beforeEach(function () {
|
requestInits = [];
|
});
|
it('Constructor', function () {
|
var handler = tfn.io.nodeHTTPRequest('./foo_model.json');
|
expect(handler == null).toEqual(false);
|
expect(typeof handler.load).toEqual('function');
|
expect(typeof handler.save).toEqual('function');
|
});
|
it('Load through NodeHTTPRequest object', function () { return __awaiter(void 0, void 0, void 0, function () {
|
var weightManifest1, trainingConfig1, floatData, handler, modelArtifacts;
|
return __generator(this, function (_a) {
|
switch (_a.label) {
|
case 0:
|
weightManifest1 = [{
|
paths: ['weightfile0'],
|
weights: [
|
{
|
name: 'dense/kernel',
|
shape: [3, 1],
|
dtype: 'float32',
|
},
|
{
|
name: 'dense/bias',
|
shape: [1],
|
dtype: 'float32',
|
}
|
]
|
}];
|
trainingConfig1 = {
|
loss: 'categorical_crossentropy',
|
metrics: ['accuracy'],
|
optimizer_config: { class_name: 'SGD', config: { learningRate: 0.1 } }
|
};
|
floatData = new Float32Array([1, 3, 3, 7]);
|
setupFakeWeightFiles({
|
'http://localhost/model.json': JSON.stringify({
|
modelTopology: modelTopology1,
|
weightsManifest: weightManifest1,
|
trainingConfig: trainingConfig1
|
}),
|
'http://localhost/weightfile0': floatData,
|
});
|
handler = tfn.io.nodeHTTPRequest('http://localhost/model.json', { credentials: 'include', cache: 'no-cache' });
|
return [4 /*yield*/, handler.load()];
|
case 1:
|
modelArtifacts = _a.sent();
|
expect(modelArtifacts.modelTopology).toEqual(modelTopology1);
|
expect(modelArtifacts.weightSpecs).toEqual(weightManifest1[0].weights);
|
expect(modelArtifacts.trainingConfig).toEqual(trainingConfig1);
|
expect(new Float32Array(tf.io.CompositeArrayBuffer.join(modelArtifacts.weightData))).toEqual(floatData);
|
expect(requestInits).toEqual([
|
{ credentials: 'include', cache: 'no-cache' },
|
{ credentials: 'include', cache: 'no-cache' }
|
]);
|
return [2 /*return*/];
|
}
|
});
|
}); });
|
it('Load through registered handler', function () { return __awaiter(void 0, void 0, void 0, function () {
|
var weightManifest1, floatData, model;
|
return __generator(this, function (_a) {
|
switch (_a.label) {
|
case 0:
|
weightManifest1 = [{
|
paths: ['weightfile0'],
|
weights: [
|
{
|
name: 'dense/kernel',
|
shape: [3, 1],
|
dtype: 'float32',
|
},
|
{
|
name: 'dense/bias',
|
shape: [1],
|
dtype: 'float32',
|
}
|
]
|
}];
|
floatData = new Float32Array([1, 3, 3, 7]);
|
setupFakeWeightFiles({
|
'https://localhost/model.json': JSON.stringify({ modelTopology: modelTopology1, weightsManifest: weightManifest1 }),
|
'https://localhost/weightfile0': floatData,
|
});
|
return [4 /*yield*/, tf.loadLayersModel('https://localhost/model.json')];
|
case 1:
|
model = _a.sent();
|
expect(model.inputs.length).toEqual(1);
|
expect(model.inputs[0].shape).toEqual([null, 3]);
|
expect(model.outputs.length).toEqual(1);
|
expect(model.outputs[0].shape).toEqual([null, 1]);
|
return [2 /*return*/];
|
}
|
});
|
}); });
|
});
|