"use strict";
|
/**
|
* @license
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
Object.defineProperty(exports, "__esModule", { value: true });
|
exports.batchMatMulConfig = void 0;
|
var tfjs_1 = require("@tensorflow/tfjs");
|
var nodejs_kernel_backend_1 = require("../nodejs_kernel_backend");
|
exports.batchMatMulConfig = {
|
kernelName: tfjs_1.BatchMatMul,
|
backendName: 'tensorflow',
|
kernelFunc: function (args) {
|
var _a = args.inputs, a = _a.a, b = _a.b;
|
var backend = args.backend;
|
var _b = args.attrs, transposeA = _b.transposeA, transposeB = _b.transposeB;
|
var opAttrs = [
|
(0, nodejs_kernel_backend_1.createTensorsTypeOpAttr)('T', a.dtype),
|
{ name: 'adj_x', type: backend.binding.TF_ATTR_BOOL, value: transposeA },
|
{ name: 'adj_y', type: backend.binding.TF_ATTR_BOOL, value: transposeB }
|
];
|
// libtensorflow's BatchMatMulV2 op performs the same behavior as other tfjs
|
// backends' BatchMatMul (supports broadcasting), so a string literal is
|
// used here to point to libtensorflow's BatchMatMulV2 op, instead of using
|
// const `BatchMatMul` ('BatchMatMul') to resolve node-backend's special
|
// mapping.
|
return backend.executeSingleOutput('BatchMatMulV2', opAttrs, [a, b]);
|
}
|
};
|