"use strict";
|
/**
|
* @license
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
var __spreadArray = (this && this.__spreadArray) || function (to, from, pack) {
|
if (pack || arguments.length === 2) for (var i = 0, l = from.length, ar; i < l; i++) {
|
if (ar || !(i in from)) {
|
if (!ar) ar = Array.prototype.slice.call(from, 0, i);
|
ar[i] = from[i];
|
}
|
}
|
return to.concat(ar || Array.prototype.slice.call(from));
|
};
|
Object.defineProperty(exports, "__esModule", { value: true });
|
exports.conv2dImpl = exports.conv2DConfig = void 0;
|
var tfjs_1 = require("@tensorflow/tfjs");
|
var nodejs_kernel_backend_1 = require("../nodejs_kernel_backend");
|
exports.conv2DConfig = {
|
kernelName: tfjs_1.Conv2D,
|
backendName: 'tensorflow',
|
kernelFunc: function (args) {
|
var _a = args.inputs, x = _a.x, filter = _a.filter;
|
var backend = args.backend;
|
var _b = args.attrs, strides = _b.strides, pad = _b.pad, dataFormat = _b.dataFormat, dilations = _b.dilations, dimRoundingMode = _b.dimRoundingMode;
|
var $dataFormat = tfjs_1.backend_util.convertConv2DDataFormat(dataFormat);
|
var convInfo = tfjs_1.backend_util.computeConv2DInfo(x.shape, filter.shape, strides, dilations, pad, dimRoundingMode, false /* depthwise */, $dataFormat);
|
return conv2dImpl(x, filter, convInfo, backend);
|
}
|
};
|
function conv2dImpl(x, filter, convInfo, backend) {
|
if (convInfo.padInfo.type !== 'VALID' && convInfo.padInfo.type !== 'SAME' &&
|
convInfo.padInfo.type !== 'EXPLICIT') {
|
throw new Error("TF Backend supports only 'valid' and 'same' padding " +
|
"while padding was ".concat(convInfo.padInfo.type));
|
}
|
var strides = [1, convInfo.strideHeight, convInfo.strideWidth, 1];
|
var padding = convInfo.padInfo.type;
|
var dataFormat = convInfo.dataFormat === 'channelsLast' ? 'NHWC' : 'NCHW';
|
var dilations = [1, convInfo.dilationHeight, convInfo.dilationWidth, 1];
|
var opAttrs = [
|
(0, nodejs_kernel_backend_1.createTensorsTypeOpAttr)('T', x.dtype),
|
{ name: 'strides', type: backend.binding.TF_ATTR_INT, value: strides },
|
{ name: 'padding', type: backend.binding.TF_ATTR_STRING, value: padding },
|
{
|
name: 'data_format',
|
type: backend.binding.TF_ATTR_STRING,
|
value: dataFormat
|
},
|
{ name: 'use_cudnn_on_gpu', type: backend.binding.TF_ATTR_BOOL, value: true },
|
{ name: 'dilations', type: backend.binding.TF_ATTR_INT, value: dilations },
|
];
|
if (padding === 'EXPLICIT') {
|
var padValue = [
|
convInfo.padInfo.top, convInfo.padInfo.bottom, convInfo.padInfo.left,
|
convInfo.padInfo.right
|
];
|
opAttrs.push({
|
name: 'explicit_paddings',
|
type: backend.binding.TF_ATTR_INT,
|
value: dataFormat === 'NHWC' ? __spreadArray(__spreadArray([0, 0], padValue, true), [0, 0], false) : __spreadArray([0, 0, 0, 0], padValue, true)
|
});
|
}
|
return backend.executeSingleOutput(tfjs_1.Conv2D, opAttrs, [x, filter]);
|
}
|
exports.conv2dImpl = conv2dImpl;
|