"use strict";
|
/**
|
* @license
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
Object.defineProperty(exports, "__esModule", { value: true });
|
exports.fusedBatchNormConfig = void 0;
|
var tfjs_1 = require("@tensorflow/tfjs");
|
var nodejs_kernel_backend_1 = require("../nodejs_kernel_backend");
|
exports.fusedBatchNormConfig = {
|
kernelName: tfjs_1.FusedBatchNorm,
|
backendName: 'tensorflow',
|
kernelFunc: function (args) {
|
var _a = args.inputs, x = _a.x, mean = _a.mean, variance = _a.variance;
|
var _b = args.inputs, scale = _b.scale, offset = _b.offset;
|
var backend = args.backend;
|
var varianceEpsilon = args.attrs.varianceEpsilon;
|
return (0, tfjs_1.tidy)(function () {
|
if (mean.rank > 1) {
|
// Fused batch norm doesn't work with high-dim mean/var/scale/offset.
|
var inv = (0, tfjs_1.rsqrt)((0, tfjs_1.add)(variance, (0, tfjs_1.scalar)(varianceEpsilon)));
|
if (scale != null) {
|
inv = (0, tfjs_1.mul)(inv, scale);
|
}
|
var xNorm = (0, tfjs_1.mul)((0, tfjs_1.sub)(x, mean), inv);
|
return offset != null ? (0, tfjs_1.add)(xNorm, offset) : xNorm;
|
}
|
var dataFormat = 'NHWC';
|
var depth = x.shape[3];
|
var opAttrs = [
|
(0, nodejs_kernel_backend_1.createTensorsTypeOpAttr)('T', x.dtype),
|
{
|
name: 'epsilon',
|
type: backend.binding.TF_ATTR_FLOAT,
|
value: varianceEpsilon
|
},
|
{
|
name: 'data_format',
|
type: backend.binding.TF_ATTR_STRING,
|
value: dataFormat
|
},
|
{ name: 'is_training', type: backend.binding.TF_ATTR_BOOL, value: false },
|
];
|
var numOutputs = 5;
|
if (scale == null) {
|
scale = (0, tfjs_1.fill)([depth], 1);
|
}
|
if (offset == null) {
|
offset = (0, tfjs_1.fill)([depth], 0);
|
}
|
return backend.executeMultipleOutputs(tfjs_1.FusedBatchNorm, opAttrs, [x, scale, offset, mean, variance], numOutputs)[0];
|
});
|
}
|
};
|