"use strict";
|
/**
|
* @license
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
var __extends = (this && this.__extends) || (function () {
|
var extendStatics = function (d, b) {
|
extendStatics = Object.setPrototypeOf ||
|
({ __proto__: [] } instanceof Array && function (d, b) { d.__proto__ = b; }) ||
|
function (d, b) { for (var p in b) if (Object.prototype.hasOwnProperty.call(b, p)) d[p] = b[p]; };
|
return extendStatics(d, b);
|
};
|
return function (d, b) {
|
if (typeof b !== "function" && b !== null)
|
throw new TypeError("Class extends value " + String(b) + " is not a constructor or null");
|
extendStatics(d, b);
|
function __() { this.constructor = d; }
|
d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __());
|
};
|
})();
|
var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) {
|
function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); }
|
return new (P || (P = Promise))(function (resolve, reject) {
|
function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } }
|
function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } }
|
function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); }
|
step((generator = generator.apply(thisArg, _arguments || [])).next());
|
});
|
};
|
var __generator = (this && this.__generator) || function (thisArg, body) {
|
var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g;
|
return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g;
|
function verb(n) { return function (v) { return step([n, v]); }; }
|
function step(op) {
|
if (f) throw new TypeError("Generator is already executing.");
|
while (g && (g = 0, op[0] && (_ = 0)), _) try {
|
if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t;
|
if (y = 0, t) op = [op[0] & 2, t.value];
|
switch (op[0]) {
|
case 0: case 1: t = op; break;
|
case 4: _.label++; return { value: op[1], done: false };
|
case 5: _.label++; y = op[1]; op = [0]; continue;
|
case 7: op = _.ops.pop(); _.trys.pop(); continue;
|
default:
|
if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; }
|
if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; }
|
if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; }
|
if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; }
|
if (t[2]) _.ops.pop();
|
_.trys.pop(); continue;
|
}
|
op = body.call(thisArg, _);
|
} catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; }
|
if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true };
|
}
|
};
|
Object.defineProperty(exports, "__esModule", { value: true });
|
exports.ensureTensorflowBackend = exports.createOpAttr = exports.createTensorsTypeOpAttr = exports.getTFDType = exports.nodeBackend = exports.NodeJSKernelBackend = void 0;
|
var tf = require("@tensorflow/tfjs");
|
var tfjs_1 = require("@tensorflow/tfjs");
|
var util_1 = require("util");
|
var int64_tensors_1 = require("./int64_tensors");
|
// tslint:disable-next-line:no-require-imports
|
var messages = require('./proto/api_pb');
|
var NodeJSKernelBackend = /** @class */ (function (_super) {
|
__extends(NodeJSKernelBackend, _super);
|
function NodeJSKernelBackend(binding, packageName) {
|
var _this = _super.call(this) || this;
|
_this.binding = binding;
|
_this.isGPUPackage = packageName === '@tensorflow/tfjs-node-gpu';
|
_this.isUsingGpuDevice = _this.binding.isUsingGpuDevice();
|
_this.tensorMap = new tf.DataStorage(_this, tf.engine());
|
return _this;
|
}
|
NodeJSKernelBackend.prototype.getDTypeInteger = function (dtype) {
|
switch (dtype) {
|
case 'float32':
|
return this.binding.TF_FLOAT;
|
case 'int32':
|
return this.binding.TF_INT32;
|
case 'bool':
|
return this.binding.TF_BOOL;
|
case 'complex64':
|
return this.binding.TF_COMPLEX64;
|
case 'string':
|
return this.binding.TF_STRING;
|
default:
|
throw new Error("Unsupported DType: ".concat(dtype));
|
}
|
};
|
NodeJSKernelBackend.prototype.typeAttributeFromTensor = function (value) {
|
return this.getDTypeInteger(value.dtype);
|
};
|
// Creates a new Tensor and maps the dataId to the passed in ID.
|
NodeJSKernelBackend.prototype.createOutputTensor = function (metadata) {
|
var newId = {};
|
this.tensorMap.set(newId, {
|
shape: metadata.shape,
|
dtype: metadata.dtype,
|
id: metadata.id,
|
values: null,
|
refCount: 1
|
});
|
var dtype;
|
switch (metadata.dtype) {
|
case this.binding.TF_FLOAT:
|
dtype = 'float32';
|
break;
|
case this.binding.TF_INT32:
|
dtype = 'int32';
|
break;
|
case this.binding.TF_INT64:
|
console.warn('INT64 output tensor will be stored as BigInt64Array.');
|
// INT64 is not supported in TFJS yet, cast it to int32.
|
dtype = 'int32';
|
break;
|
case this.binding.TF_BOOL:
|
dtype = 'bool';
|
break;
|
case this.binding.TF_COMPLEX64:
|
dtype = 'complex64';
|
break;
|
case this.binding.TF_STRING:
|
dtype = 'string';
|
break;
|
case this.binding.TF_RESOURCE:
|
// NOTE(cais): We currently represent resource-type Tensors
|
// as string of ubytes.
|
dtype = 'string';
|
break;
|
case this.binding.TF_UINT8:
|
// TensorFlow uses UINT8 as dtype for image tensor. UINT8 is not
|
// supported in TFJS yet, cast it to int32.
|
dtype = 'int32';
|
break;
|
default:
|
throw new Error("Unknown dtype enum ".concat(metadata.dtype));
|
}
|
// TODO(yassogba) Enable this once all the kernels are removed from backend.
|
// We can then change the return type from Tensor to TensorInfo.
|
// return {dataId: newId, shape: metadata.shape, dtype};
|
var tensorInfo = { dataId: newId, shape: metadata.shape, dtype: dtype };
|
return tf.engine().makeTensorFromTensorInfo(tensorInfo);
|
};
|
// Prepares Tensor instances for Op execution.
|
NodeJSKernelBackend.prototype.getInputTensorIds = function (tensors) {
|
var ids = [];
|
for (var i = 0; i < tensors.length; i++) {
|
if (tensors[i] instanceof int64_tensors_1.Int64Scalar) {
|
// Then `tensors[i]` is a Int64Scalar, which we currently represent
|
// using an `Int32Array`.
|
var value = tensors[i].valueArray;
|
var id = this.binding.createTensor([], this.binding.TF_INT64, value);
|
ids.push(id);
|
}
|
else {
|
var info = this.tensorMap.get(tensors[i].dataId);
|
// TODO - what about ID in this case? Handle in write()??
|
if (info.values != null) {
|
// Values were delayed to write into the TensorHandle. Do that before
|
// Op execution and clear stored values.
|
info.id =
|
this.binding.createTensor(info.shape, info.dtype, info.values);
|
info.values = null;
|
}
|
ids.push(info.id);
|
}
|
}
|
return ids;
|
};
|
NodeJSKernelBackend.prototype.createReductionOpAttrs = function (tensor, keepDims) {
|
if (keepDims === void 0) { keepDims = false; }
|
return [
|
{ name: 'keep_dims', type: this.binding.TF_ATTR_BOOL, value: keepDims },
|
createTensorsTypeOpAttr('T', tensor.dtype),
|
createTensorsTypeOpAttr('Tidx', 'int32')
|
];
|
};
|
NodeJSKernelBackend.prototype.floatPrecision = function () {
|
return 32;
|
};
|
NodeJSKernelBackend.prototype.epsilon = function () {
|
return _super.prototype.epsilon.call(this);
|
};
|
/**
|
* Executes an op that has a single input and output.
|
*
|
* Helper function to wrap executeSingleOutput in a particular case.
|
* @param name The name of the Op to execute.
|
* @param input The input Tensor for the Op.
|
*/
|
NodeJSKernelBackend.prototype.executeSingleInput = function (name, input) {
|
var opAttrs = [createTensorsTypeOpAttr('T', input.dtype)];
|
return this.executeSingleOutput(name, opAttrs, [input]);
|
};
|
/**
|
* Executes a TensorFlow Eager Op that provides one output Tensor.
|
* @param name The name of the Op to execute.
|
* @param opAttrs The list of Op attributes required to execute.
|
* @param inputs The list of input Tensors for the Op.
|
* @return A resulting Tensor from Op execution.
|
*/
|
NodeJSKernelBackend.prototype.executeSingleOutput = function (name, opAttrs, inputs) {
|
var outputMetadata = this.binding.executeOp(name, opAttrs, this.getInputTensorIds(inputs), 1);
|
return this.createOutputTensor(outputMetadata[0]);
|
};
|
/**
|
* Executes a TensorFlow Eager Op that provides multiple output Tensors.
|
* @param name The name of the Op to execute.
|
* @param opAttrs The list of Op attributes required to execute.
|
* @param inputs The list of input Tensors for the Op.
|
* @param numOutputs The number of output Tensors for Op execution.
|
* @return A resulting Tensor array from Op execution.
|
*/
|
NodeJSKernelBackend.prototype.executeMultipleOutputs = function (name, opAttrs, inputs, numOutputs) {
|
var _this = this;
|
var outputMetadata = this.binding.executeOp(name, opAttrs, this.getInputTensorIds(inputs), numOutputs);
|
return outputMetadata.map(function (m) { return _this.createOutputTensor(m); });
|
};
|
NodeJSKernelBackend.prototype.numDataIds = function () {
|
return this.tensorMap.numDataIds();
|
};
|
NodeJSKernelBackend.prototype.dispose = function () { };
|
NodeJSKernelBackend.prototype.read = function (dataId) {
|
return __awaiter(this, void 0, void 0, function () {
|
return __generator(this, function (_a) {
|
return [2 /*return*/, this.readSync(dataId)];
|
});
|
});
|
};
|
NodeJSKernelBackend.prototype.readSync = function (dataId) {
|
if (!this.tensorMap.has(dataId)) {
|
throw new Error("Tensor ".concat(dataId, " was not registered!"));
|
}
|
var info = this.tensorMap.get(dataId);
|
if (info.values != null) {
|
return info.values;
|
}
|
else {
|
return this.binding.tensorDataSync(info.id);
|
}
|
};
|
/**
|
* Dispose the memory if the dataId has 0 refCount. Return true if the memory
|
* is released, false otherwise.
|
* @param dataId
|
* @oaram force Optional, remove the data regardless of refCount
|
*/
|
NodeJSKernelBackend.prototype.disposeData = function (dataId, force) {
|
if (force === void 0) { force = false; }
|
// No-op if already disposed.
|
if (this.tensorMap.has(dataId)) {
|
var id = this.tensorMap.get(dataId).id;
|
this.tensorMap.get(dataId).refCount--;
|
if (!force && this.tensorMap.get(dataId).refCount > 0) {
|
return false;
|
}
|
if (id != null && id >= 0) {
|
this.binding.deleteTensor(id);
|
}
|
this.tensorMap.delete(dataId);
|
}
|
return true;
|
};
|
/** Return refCount of a `TensorData`. */
|
NodeJSKernelBackend.prototype.refCount = function (dataId) {
|
if (this.tensorMap.has(dataId)) {
|
var tensorData = this.tensorMap.get(dataId);
|
return tensorData.refCount;
|
}
|
return 0;
|
};
|
NodeJSKernelBackend.prototype.incRef = function (dataId) {
|
this.tensorMap.get(dataId).refCount++;
|
};
|
NodeJSKernelBackend.prototype.move = function (dataId, values, shape, dtype, refCount) {
|
this.tensorMap.set(dataId, { shape: shape, dtype: getTFDType(dtype), values: values, id: -1, refCount: refCount });
|
};
|
NodeJSKernelBackend.prototype.write = function (values, shape, dtype) {
|
var dataId = {};
|
this.move(dataId, values, shape, dtype, 1);
|
return dataId;
|
};
|
NodeJSKernelBackend.prototype.applyActivation = function (input, activation, preluActivationWeights, leakyreluAlpha) {
|
var result = input;
|
if (activation != null) {
|
if (activation === 'linear') {
|
// No-op
|
}
|
else if (activation === 'relu') {
|
result = tf.relu(result);
|
}
|
else if (activation === 'prelu') {
|
result = tf.prelu(result, preluActivationWeights);
|
}
|
else if (activation === 'leakyrelu') {
|
result = tf.leakyRelu(result, leakyreluAlpha);
|
}
|
else if (activation === 'elu') {
|
result = tf.elu(result);
|
}
|
else if (activation === 'relu6') {
|
result = tf.relu6(result);
|
}
|
else if (activation === 'sigmoid') {
|
result = tf.sigmoid(result);
|
}
|
else {
|
throw new Error("Activation: ".concat(activation, " has not been implemented for the Node.js backend"));
|
}
|
}
|
return result;
|
};
|
NodeJSKernelBackend.prototype.divide = function (a, b) {
|
var opAttrs = [createTensorsTypeOpAttr('T', tfjs_1.backend_util.upcastType(a.dtype, b.dtype))];
|
return this.executeSingleOutput('Div', opAttrs, [a, b]);
|
};
|
NodeJSKernelBackend.prototype.divNoNan = function (a, b) {
|
var opAttrs = [createTensorsTypeOpAttr('T', tfjs_1.backend_util.upcastType(a.dtype, b.dtype))];
|
return this.executeSingleOutput('DivNoNan', opAttrs, [a, b]);
|
};
|
NodeJSKernelBackend.prototype.where = function (condition) {
|
return this.executeSingleOutput('Where', [], [condition]);
|
};
|
NodeJSKernelBackend.prototype.topKValues = function (x, k) {
|
throw new Error('Method not implemented.');
|
};
|
NodeJSKernelBackend.prototype.topKIndices = function (x, k) {
|
throw new Error('Method not implemented.');
|
};
|
NodeJSKernelBackend.prototype.int = function (x) {
|
throw new Error('Method not implemented.');
|
};
|
NodeJSKernelBackend.prototype.decodeJpeg = function (contents, channels, ratio, fancyUpscaling, tryRecoverTruncated, acceptableFraction, dctMethod) {
|
var opAttrs = [
|
{ name: 'channels', type: this.binding.TF_ATTR_INT, value: channels },
|
{ name: 'ratio', type: this.binding.TF_ATTR_INT, value: ratio }, {
|
name: 'fancy_upscaling',
|
type: this.binding.TF_ATTR_BOOL,
|
value: fancyUpscaling
|
},
|
{
|
name: 'try_recover_truncated',
|
type: this.binding.TF_ATTR_BOOL,
|
value: tryRecoverTruncated
|
},
|
{
|
name: 'acceptable_fraction',
|
type: this.binding.TF_ATTR_FLOAT,
|
value: acceptableFraction
|
},
|
{ name: 'dct_method', type: this.binding.TF_ATTR_STRING, value: dctMethod }
|
];
|
var inputArgs = [(0, tfjs_1.scalar)(contents, 'string')];
|
return this.executeSingleOutput('DecodeJpeg', opAttrs, inputArgs);
|
};
|
NodeJSKernelBackend.prototype.decodePng = function (contents, channels) {
|
var opAttrs = [{ name: 'channels', type: this.binding.TF_ATTR_INT, value: channels }];
|
var inputArgs = [(0, tfjs_1.scalar)(contents, 'string')];
|
return this.executeSingleOutput('DecodePng', opAttrs, inputArgs);
|
};
|
NodeJSKernelBackend.prototype.decodeBmp = function (contents, channels) {
|
var opAttrs = [{ name: 'channels', type: this.binding.TF_ATTR_INT, value: channels }];
|
var inputArgs = [(0, tfjs_1.scalar)(contents, 'string')];
|
return this.executeSingleOutput('DecodeBmp', opAttrs, inputArgs);
|
};
|
NodeJSKernelBackend.prototype.decodeGif = function (contents) {
|
var inputArgs = [(0, tfjs_1.scalar)(contents, 'string')];
|
return this.executeSingleOutput('DecodeGif', [], inputArgs);
|
};
|
NodeJSKernelBackend.prototype.executeEncodeImageOp = function (name, opAttrs, imageData, imageShape) {
|
var inputTensorId = this.binding.createTensor(imageShape, this.binding.TF_UINT8, imageData);
|
var outputMetadata = this.binding.executeOp(name, opAttrs, [inputTensorId], 1);
|
this.binding.deleteTensor(inputTensorId);
|
var outputTensorInfo = outputMetadata[0];
|
// prevent the tensor data from being converted to a UTF8 string, since
|
// the encoded data is not valid UTF8
|
outputTensorInfo.dtype = this.binding.TF_UINT8;
|
return this.createOutputTensor(outputTensorInfo);
|
};
|
NodeJSKernelBackend.prototype.encodeJpeg = function (imageData, imageShape, format, quality, progressive, optimizeSize, chromaDownsampling, densityUnit, xDensity, yDensity, xmpMetadata) {
|
var opAttrs = [
|
{ name: 'format', type: this.binding.TF_ATTR_STRING, value: format },
|
{ name: 'quality', type: this.binding.TF_ATTR_INT, value: quality }, {
|
name: 'progressive',
|
type: this.binding.TF_ATTR_BOOL,
|
value: progressive
|
},
|
{
|
name: 'optimize_size',
|
type: this.binding.TF_ATTR_BOOL,
|
value: optimizeSize
|
},
|
{
|
name: 'chroma_downsampling',
|
type: this.binding.TF_ATTR_BOOL,
|
value: chromaDownsampling
|
},
|
{
|
name: 'density_unit',
|
type: this.binding.TF_ATTR_STRING,
|
value: densityUnit
|
},
|
{ name: 'x_density', type: this.binding.TF_ATTR_INT, value: xDensity },
|
{ name: 'y_density', type: this.binding.TF_ATTR_INT, value: yDensity }, {
|
name: 'xmp_metadata',
|
type: this.binding.TF_ATTR_STRING,
|
value: xmpMetadata
|
}
|
];
|
return this.executeEncodeImageOp('EncodeJpeg', opAttrs, imageData, imageShape);
|
};
|
NodeJSKernelBackend.prototype.encodePng = function (imageData, imageShape, compression) {
|
var opAttrs = [
|
{ name: 'compression', type: this.binding.TF_ATTR_INT, value: compression }
|
];
|
return this.executeEncodeImageOp('EncodePng', opAttrs, imageData, imageShape);
|
};
|
NodeJSKernelBackend.prototype.deleteSavedModel = function (id) {
|
this.binding.deleteSavedModel(id);
|
};
|
NodeJSKernelBackend.prototype.loadSavedModelMetaGraph = function (path, tags) {
|
return this.binding.loadSavedModel(path, tags);
|
};
|
NodeJSKernelBackend.prototype.getMappedInputTensorIds = function (inputs, inputTensorInfos) {
|
var tensorIds = this.getInputTensorIds(inputs);
|
var newTensors = [];
|
for (var i = 0; i < inputs.length; i++) {
|
if (inputTensorInfos[i] != null) {
|
if (inputTensorInfos[i].tfDtype === 'DT_UINT8') {
|
var data = Uint8Array.from(inputs[i].dataSync());
|
var inputTensorId = this.binding.createTensor(inputs[i].shape, this.binding.TF_UINT8, data);
|
tensorIds[i] = inputTensorId;
|
newTensors.push(i);
|
}
|
else if (inputTensorInfos[i].tfDtype === 'DT_INT64') {
|
var data = (0, int64_tensors_1.encodeInt32ArrayAsInt64)(inputs[i].dataSync());
|
var inputTensorId = this.binding.createTensor(inputs[i].shape, this.binding.TF_INT64, data);
|
tensorIds[i] = inputTensorId;
|
newTensors.push(i);
|
}
|
}
|
}
|
return { tensorIds: tensorIds, newTensors: newTensors };
|
};
|
NodeJSKernelBackend.prototype.runSavedModel = function (id, inputs, inputTensorInfos, outputOpNames) {
|
var _this = this;
|
var _a = this.getMappedInputTensorIds(inputs, inputTensorInfos), tensorIds = _a.tensorIds, newTensors = _a.newTensors;
|
var outputMetadata = this.binding.runSavedModel(id, tensorIds, inputTensorInfos.map(function (info) { return info.name; }).join(','), outputOpNames.join(','));
|
for (var i = 0; i < tensorIds.length; i++) {
|
if (newTensors.includes(i)) {
|
this.binding.deleteTensor(tensorIds[i]);
|
}
|
}
|
return outputMetadata.map(function (m) { return _this.createOutputTensor(m); });
|
};
|
// ------------------------------------------------------------
|
// TensorBoard-related (tfjs-node-specific) backend kernels.
|
NodeJSKernelBackend.prototype.summaryWriter = function (logdir) {
|
var opAttrs = [
|
{
|
name: 'shared_name',
|
type: this.binding.TF_ATTR_STRING,
|
value: "logdir:".concat(logdir)
|
},
|
{ name: 'container', type: this.binding.TF_ATTR_STRING, value: '' }
|
];
|
var writerResource = this.executeSingleOutput('SummaryWriter', opAttrs, []);
|
return writerResource;
|
};
|
NodeJSKernelBackend.prototype.createSummaryFileWriter = function (resourceHandle, logdir, maxQueue, flushMillis, filenameSuffix) {
|
var inputArgs = [
|
resourceHandle, (0, tfjs_1.scalar)(logdir),
|
(0, tfjs_1.scalar)(maxQueue == null ? 10 : maxQueue, 'int32'),
|
(0, tfjs_1.scalar)(flushMillis == null ? 2 * 60 * 1000 : flushMillis, 'int32'),
|
(0, tfjs_1.scalar)(filenameSuffix == null ? '.v2' : filenameSuffix)
|
];
|
this.executeMultipleOutputs('CreateSummaryFileWriter', [], inputArgs, 0);
|
};
|
NodeJSKernelBackend.prototype.writeScalarSummary = function (resourceHandle, step, name, value) {
|
var _this = this;
|
(0, tfjs_1.tidy)(function () {
|
tfjs_1.util.assert(Number.isInteger(step), function () { return "step is expected to be an integer, but is instead ".concat(step); });
|
var inputArgs = [resourceHandle, new int64_tensors_1.Int64Scalar(step), (0, tfjs_1.scalar)(name, 'string')];
|
var typeAttr;
|
if (typeof value === 'number') {
|
inputArgs.push((0, tfjs_1.scalar)(value));
|
typeAttr = _this.binding.TF_FLOAT;
|
}
|
else {
|
// `value` is a Scalar.
|
tfjs_1.util.assert(value.rank === 0, function () { return "A non-scalar tensor (rank ".concat(value.rank, ") is passed to ") +
|
"writeScalarSummary()"; });
|
inputArgs.push(value);
|
typeAttr = _this.typeAttributeFromTensor(value);
|
}
|
var opAttrs = [{ name: 'T', type: _this.binding.TF_ATTR_TYPE, value: typeAttr }];
|
var ids = _this.getInputTensorIds(inputArgs);
|
_this.binding.executeOp('WriteScalarSummary', opAttrs, ids, 0);
|
// release the tensorflow tensor for Int64Scalar value of step
|
_this.binding.deleteTensor(ids[1]);
|
});
|
};
|
NodeJSKernelBackend.prototype.writeHistogramSummary = function (resourceHandle, step, name, data, bucketCount, description) {
|
var _this = this;
|
(0, tfjs_1.tidy)(function () {
|
tfjs_1.util.assert(Number.isInteger(step), function () { return "step is expected to be an integer, but is instead ".concat(step); });
|
// We use the WriteSummary op, and not WriteHistogramSummary. The
|
// difference is that WriteHistogramSummary takes a tensor of any shape,
|
// and places the values in 30 buckets, while WriteSummary expects a
|
// tensor which already describes the bucket widths and counts.
|
//
|
// If we were to use WriteHistogramSummary, we wouldn't have to
|
// implement the "bucketization" of the input tensor, but we also
|
// wouldn't have control over the number of buckets, or the description
|
// of the graph.
|
//
|
// Therefore, we instead use WriteSummary, which makes it possible to
|
// support these features. However, the trade-off is that we have to
|
// implement our own "bucketization", and have to write the summary as a
|
// protobuf message.
|
var content = new messages.HistogramPluginData().setVersion(0);
|
var pluginData = new messages.SummaryMetadata.PluginData()
|
.setPluginName('histograms')
|
.setContent(content.serializeBinary());
|
var summary = new messages.SummaryMetadata()
|
.setPluginData(pluginData)
|
.setDisplayName(null)
|
.setSummaryDescription(description);
|
var summaryTensor = (0, tfjs_1.scalar)(summary.serializeBinary(), 'string');
|
var nameTensor = (0, tfjs_1.scalar)(name, 'string');
|
var stepScalar = new int64_tensors_1.Int64Scalar(step);
|
var buckets = _this.buckets(data, bucketCount);
|
tfjs_1.util.assert(buckets.rank === 2 && buckets.shape[1] === 3, function () { return "Expected buckets to have shape [k, 3], but they had shape ".concat(buckets.shape); });
|
tfjs_1.util.assert(buckets.dtype === 'float32', function () { return "Expected buckets to have dtype float32, but they had dtype ".concat(buckets.dtype); });
|
var inputArgs = [resourceHandle, stepScalar, buckets, nameTensor, summaryTensor];
|
var typeAttr = _this.typeAttributeFromTensor(buckets);
|
var opAttrs = [{ name: 'T', type: _this.binding.TF_ATTR_TYPE, value: typeAttr }];
|
var ids = _this.getInputTensorIds(inputArgs);
|
_this.binding.executeOp('WriteSummary', opAttrs, ids, 0);
|
// release the tensorflow tensor for Int64Scalar value of step
|
_this.binding.deleteTensor(ids[1]);
|
});
|
};
|
NodeJSKernelBackend.prototype.flushSummaryWriter = function (resourceHandle) {
|
var inputArgs = [resourceHandle];
|
this.executeMultipleOutputs('FlushSummaryWriter', [], inputArgs, 0);
|
};
|
/**
|
* Group data into histogram buckets.
|
*
|
* @param data A `Tensor` of any shape. Must be castable to `float32`
|
* @param bucketCount Optional positive `number`
|
* @returns A `Tensor` of shape `[k, 3]` and type `float32`. The `i`th row
|
* is
|
* a triple `[leftEdge, rightEdge, count]` for a single bucket. The value
|
* of `k` is either `bucketCount`, `1` or `0`.
|
*/
|
NodeJSKernelBackend.prototype.buckets = function (data, bucketCount) {
|
if (data.size === 0) {
|
return tf.tensor([], [0, 3], 'float32');
|
}
|
// 30 is the default number of buckets in the TensorFlow Python
|
// implementation. See
|
// https://github.com/tensorflow/tensorboard/blob/master/tensorboard/plugins/histogram/summary_v2.py
|
bucketCount = bucketCount !== undefined ? bucketCount : 30;
|
tfjs_1.util.assert(Number.isInteger(bucketCount) && bucketCount > 0, function () {
|
return "Expected bucket count to be a strictly positive integer, but it was " +
|
"".concat(bucketCount);
|
});
|
data = data.flatten();
|
data = data.cast('float32');
|
var min = data.min();
|
var max = data.max();
|
var range = max.sub(min);
|
var isSingular = range.equal(0).arraySync() !== 0;
|
if (isSingular) {
|
var center = min;
|
var bucketStart = center.sub(0.5);
|
var bucketEnd = center.add(0.5);
|
var bucketCounts_1 = tf.scalar(data.size, 'float32');
|
return tf.concat([bucketStart, bucketEnd, bucketCounts_1]).reshape([1, 3]);
|
}
|
var bucketWidth = range.div(bucketCount);
|
var offsets = data.sub(min);
|
var bucketIndices = offsets.floorDiv(bucketWidth).cast('int32');
|
var clampedIndices = tf.minimum(bucketIndices, bucketCount - 1).cast('int32');
|
var oneHots = tf.oneHot(clampedIndices, bucketCount);
|
var bucketCounts = oneHots.sum(0).cast('int32');
|
var edges = tf.linspace(min.arraySync(), max.arraySync(), bucketCount + 1);
|
// Ensure last value in edges is max (TF's linspace op doesn't do this)
|
edges = tf.concat([edges.slice(0, bucketCount), max.reshape([1])], 0);
|
var leftEdges = edges.slice(0, bucketCount);
|
var rightEdges = edges.slice(1, bucketCount);
|
return tf.stack([leftEdges, rightEdges, bucketCounts.cast('float32')])
|
.transpose();
|
};
|
// ~ TensorBoard-related (tfjs-node-specific) backend kernels.
|
// ------------------------------------------------------------
|
NodeJSKernelBackend.prototype.memory = function () {
|
// Due to automatic garbage collection, the numbers are unreliable.
|
// TODO(kreeger): Since there is finalization in C, count the true
|
// number of undisposed tensors.
|
return { unreliable: true };
|
};
|
NodeJSKernelBackend.prototype.time = function (f) {
|
return __awaiter(this, void 0, void 0, function () {
|
var start, elapsed;
|
return __generator(this, function (_a) {
|
start = process.hrtime();
|
f();
|
elapsed = process.hrtime(start);
|
return [2 /*return*/, { kernelMs: elapsed[0] * 1000 + elapsed[1] / 1000000 }];
|
});
|
});
|
};
|
NodeJSKernelBackend.prototype.getNumOfSavedModels = function () {
|
return this.binding.getNumOfSavedModels();
|
};
|
NodeJSKernelBackend.prototype.getNumOfTFTensors = function () {
|
return this.binding.getNumOfTensors();
|
};
|
return NodeJSKernelBackend;
|
}(tfjs_1.KernelBackend));
|
exports.NodeJSKernelBackend = NodeJSKernelBackend;
|
/** Returns an instance of the Node.js backend. */
|
function nodeBackend() {
|
return tf.findBackend('tensorflow');
|
}
|
exports.nodeBackend = nodeBackend;
|
/** Returns the TF dtype for a given DataType. */
|
function getTFDType(dataType) {
|
var binding = nodeBackend().binding;
|
switch (dataType) {
|
case 'float32':
|
return binding.TF_FLOAT;
|
case 'int32':
|
return binding.TF_INT32;
|
case 'bool':
|
return binding.TF_BOOL;
|
case 'complex64':
|
return binding.TF_COMPLEX64;
|
case 'string':
|
return binding.TF_STRING;
|
// tslint:disable-next-line:no-any
|
case 'int64':
|
// int64 is not a generally supported dtype in TensorFlow.js
|
// (tfjs-core). However, it needs to be included here for the purpose of
|
// writing the `step` value to TensorBoard via WriteScalarSummary and
|
// other op kernels.
|
return binding.TF_INT64;
|
default:
|
var errorMessage = "Unknown dtype: ".concat(dataType);
|
throw new Error(errorMessage);
|
}
|
}
|
exports.getTFDType = getTFDType;
|
/**
|
* Creates a TFEOpAttr for a 'type' OpDef attribute from a Tensor or list of
|
* Tensors.
|
*/
|
function createTensorsTypeOpAttr(attrName, tensorsOrDtype) {
|
if ((0, util_1.isNullOrUndefined)(tensorsOrDtype)) {
|
throw new Error('Invalid input tensors value.');
|
}
|
return {
|
name: attrName,
|
type: nodeBackend().binding.TF_ATTR_TYPE,
|
value: (tensorsOrDtype instanceof tf.Tensor || Array.isArray(tensorsOrDtype)) ?
|
getTFDTypeForInputs(tensorsOrDtype) :
|
getTFDType(tensorsOrDtype)
|
};
|
}
|
exports.createTensorsTypeOpAttr = createTensorsTypeOpAttr;
|
// TODO(yassogba) remove? who uses this?
|
function createOpAttr(attrName, tensorsOrDtype, value) {
|
if ((0, util_1.isNullOrUndefined)(tensorsOrDtype)) {
|
throw new Error('Invalid input tensors value.');
|
}
|
return { name: attrName, type: nodeBackend().binding.TF_BOOL, value: value };
|
}
|
exports.createOpAttr = createOpAttr;
|
/** Returns the dtype number for a single or list of input Tensors. */
|
function getTFDTypeForInputs(tensors) {
|
if ((0, util_1.isNullOrUndefined)(tensors)) {
|
throw new Error('Invalid input tensors value.');
|
}
|
if ((0, util_1.isArray)(tensors)) {
|
for (var i = 0; i < tensors.length; i++) {
|
return getTFDType(tensors[i].dtype);
|
}
|
return -1;
|
}
|
else {
|
return getTFDType(tensors.dtype);
|
}
|
}
|
function ensureTensorflowBackend() {
|
tf.util.assert(tf.getBackend() === 'tensorflow', function () { return "Expect the current backend to be \"tensorflow\", but got \"".concat(tf.getBackend(), "\""); });
|
}
|
exports.ensureTensorflowBackend = ensureTensorflowBackend;
|