/**
|
* @license
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
|
import {backend_util, fill, greater, isNaN as tfIsNan, KernelConfig, ones, scalar, Step, StepAttrs, StepInputs, Tensor, tidy, where} from '@tensorflow/tfjs';
|
|
import {createTensorsTypeOpAttr, NodeJSKernelBackend} from '../nodejs_kernel_backend';
|
|
export const stepConfig: KernelConfig = {
|
kernelName: Step,
|
backendName: 'tensorflow',
|
kernelFunc: (args) => {
|
const {x} = args.inputs as StepInputs;
|
const backend = args.backend as NodeJSKernelBackend;
|
const {alpha} = args.attrs as unknown as StepAttrs;
|
|
const dtype = x.dtype;
|
return tidy(() => {
|
const nans = tfIsNan(x as Tensor);
|
const stepNoNans = where(
|
greater(x as Tensor, scalar(0, dtype)), ones(x.shape),
|
fill(x.shape, alpha, dtype));
|
|
const opAttrs = [createTensorsTypeOpAttr(
|
'T', backend_util.upcastType(x.dtype, stepNoNans.dtype))];
|
return backend.executeSingleOutput(
|
'Select', opAttrs, [nans, x, stepNoNans]);
|
});
|
}
|
};
|