/**
|
* @license
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
|
import {DataType, InferenceModel, MetaGraph, ModelPredictConfig, ModelTensorInfo, NamedTensorMap, SignatureDef, SignatureDefEntry, Tensor, util} from '@tensorflow/tfjs';
|
import * as fs from 'fs';
|
import {promisify} from 'util';
|
|
import {ensureTensorflowBackend, nodeBackend, NodeJSKernelBackend} from './nodejs_kernel_backend';
|
|
const readFile = promisify(fs.readFile);
|
|
// tslint:disable-next-line:no-require-imports
|
const messages = require('./proto/api_pb');
|
|
const SAVED_MODEL_FILE_NAME = '/saved_model.pb';
|
|
const SAVED_MODEL_INIT_OP_KEY = '__saved_model_init_op';
|
|
// This map is used to keep track of loaded SavedModel metagraph mapping
|
// information. The map key is TFSavedModel id in JavaScript, value is
|
// an object of path to the SavedModel, metagraph tags, and loaded Session ID in
|
// the c++ bindings. When user loads a SavedModel signature, it will go through
|
// entries in this map to find if the corresponding SavedModel session has
|
// already been loaded in C++ addon and will reuse it if existing.
|
const loadedSavedModelPathMap =
|
new Map<number, {path: string, tags: string[], sessionId: number}>();
|
|
// The ID of loaded TFSavedModel. This ID is used to keep track of loaded
|
// TFSavedModel, so the loaded session in c++ bindings for the corresponding
|
// TFSavedModel can be properly reused/disposed.
|
let nextTFSavedModelId = 0;
|
|
/**
|
* Get a key in an object by its value. This is used to get protobuf enum value
|
* from index.
|
*
|
* @param object
|
* @param value
|
*/
|
// tslint:disable-next-line:no-any
|
export function getEnumKeyFromValue(object: any, value: number): string {
|
return Object.keys(object).find(key => object[key] === value);
|
}
|
|
/**
|
* Read SavedModel proto message from path.
|
*
|
* @param path Path to SavedModel folder.
|
*/
|
export async function readSavedModelProto(path: string) {
|
// Load the SavedModel pb file and deserialize it into message.
|
try {
|
fs.accessSync(path + SAVED_MODEL_FILE_NAME, fs.constants.R_OK);
|
} catch (error) {
|
throw new Error(
|
'There is no saved_model.pb file in the directory: ' + path);
|
}
|
const modelFile = await readFile(path + SAVED_MODEL_FILE_NAME);
|
const array = new Uint8Array(modelFile);
|
return messages.SavedModel.deserializeBinary(array);
|
}
|
|
/**
|
* Inspect the MetaGraphs of the SavedModel from the provided path. This
|
* function will return an array of `MetaGraphInfo` objects.
|
*
|
* @param path Path to SavedModel folder.
|
*
|
* @doc {heading: 'Models', subheading: 'SavedModel', namespace: 'node'}
|
*/
|
export async function getMetaGraphsFromSavedModel(path: string):
|
Promise<MetaGraph[]> {
|
const result: MetaGraph[] = [];
|
|
// Get SavedModel proto message
|
const modelMessage = await readSavedModelProto(path);
|
|
// A SavedModel might have multiple MetaGraphs, identified by tags.
|
// Each MetaGraph also has it's own signatureDefs.
|
const metaGraphList = modelMessage.getMetaGraphsList();
|
for (let i = 0; i < metaGraphList.length; i++) {
|
const metaGraph = {} as MetaGraph;
|
const tags = metaGraphList[i].getMetaInfoDef().getTagsList();
|
metaGraph.tags = tags;
|
|
// Each MetaGraph has it's own signatureDefs map.
|
const signatureDef: SignatureDef = {};
|
const signatureDefMap = metaGraphList[i].getSignatureDefMap();
|
const signatureDefKeys = signatureDefMap.keys();
|
|
// Go through all signatureDefs
|
while (true) {
|
const key = signatureDefKeys.next();
|
if (key.done) {
|
break;
|
}
|
// Skip TensorFlow internal Signature '__saved_model_init_op'.
|
if (key.value === SAVED_MODEL_INIT_OP_KEY) {
|
continue;
|
}
|
const signatureDefEntry = signatureDefMap.get(key.value);
|
|
// Get all input tensors information
|
const inputsMapMessage = signatureDefEntry.getInputsMap();
|
const inputsMapKeys = inputsMapMessage.keys();
|
const inputs: {[key: string]: ModelTensorInfo} = {};
|
while (true) {
|
const inputsMapKey = inputsMapKeys.next();
|
if (inputsMapKey.done) {
|
break;
|
}
|
const inputTensor = inputsMapMessage.get(inputsMapKey.value);
|
const inputTensorInfo = {} as ModelTensorInfo;
|
const dtype =
|
getEnumKeyFromValue(messages.DataType, inputTensor.getDtype());
|
inputTensorInfo.dtype = mapTFDtypeToJSDtype(dtype);
|
inputTensorInfo.tfDtype = dtype;
|
inputTensorInfo.name = inputTensor.getName();
|
inputTensorInfo.shape = inputTensor.getTensorShape().getDimList();
|
inputs[inputsMapKey.value] = inputTensorInfo;
|
}
|
|
// Get all output tensors information
|
const outputsMapMessage = signatureDefEntry.getOutputsMap();
|
const outputsMapKeys = outputsMapMessage.keys();
|
const outputs: {[key: string]: ModelTensorInfo} = {};
|
while (true) {
|
const outputsMapKey = outputsMapKeys.next();
|
if (outputsMapKey.done) {
|
break;
|
}
|
const outputTensor = outputsMapMessage.get(outputsMapKey.value);
|
const outputTensorInfo = {} as ModelTensorInfo;
|
const dtype =
|
getEnumKeyFromValue(messages.DataType, outputTensor.getDtype());
|
outputTensorInfo.dtype = mapTFDtypeToJSDtype(dtype);
|
outputTensorInfo.tfDtype = dtype;
|
outputTensorInfo.name = outputTensor.getName();
|
outputTensorInfo.shape = outputTensor.getTensorShape().getDimList();
|
outputs[outputsMapKey.value] = outputTensorInfo;
|
}
|
|
signatureDef[key.value] = {inputs, outputs};
|
}
|
metaGraph.signatureDefs = signatureDef;
|
|
result.push(metaGraph);
|
}
|
return result;
|
}
|
|
/**
|
* Get SignatureDefEntry from SavedModel metagraphs info. The SignatureDefEntry
|
* will be used when executing a SavedModel signature.
|
*
|
* @param savedModelInfo The MetaGraphInfo array loaded through
|
* getMetaGraphsFromSavedModel().
|
* @param tags The tags of the MetaGraph to get input/output node names from.
|
* @param signature The signature to get input/output node names from.
|
*/
|
export function getSignatureDefEntryFromMetaGraphInfo(
|
savedModelInfo: MetaGraph[], tags: string[],
|
signature: string): SignatureDefEntry {
|
for (let i = 0; i < savedModelInfo.length; i++) {
|
const metaGraphInfo = savedModelInfo[i];
|
if (stringArraysHaveSameElements(tags, metaGraphInfo.tags)) {
|
if (metaGraphInfo.signatureDefs[signature] == null) {
|
throw new Error('The SavedModel does not have signature: ' + signature);
|
}
|
return metaGraphInfo.signatureDefs[signature];
|
}
|
}
|
throw new Error(`The SavedModel does not have tags: ${tags}`);
|
}
|
|
/**
|
* A `tf.TFSavedModel` is a signature loaded from a SavedModel
|
* metagraph, and allows inference execution.
|
*
|
* @doc {heading: 'Models', subheading: 'SavedModel', namespace: 'node'}
|
*/
|
export class TFSavedModel implements InferenceModel {
|
private disposed = false;
|
private outputNodeNames_: {[key: string]: string};
|
constructor(
|
private sessionId: number, private jsid: number,
|
private signature: SignatureDefEntry,
|
private backend: NodeJSKernelBackend) {}
|
|
/**
|
* Return the array of input tensor info.
|
*
|
* @doc {heading: 'Models', subheading: 'SavedModel'}
|
*/
|
get inputs(): ModelTensorInfo[] {
|
const entries = this.signature.inputs;
|
const results = Object.keys(entries).map((key: string) => entries[key]);
|
results.forEach((info: ModelTensorInfo) => {
|
info.name = info.name.replace(/:0$/, '');
|
});
|
return results;
|
}
|
|
/**
|
* Return the array of output tensor info.
|
*
|
* @doc {heading: 'Models', subheading: 'SavedModel'}
|
*/
|
get outputs(): ModelTensorInfo[] {
|
const entries = this.signature.outputs;
|
const results = Object.keys(entries).map((key: string) => entries[key]);
|
results.forEach((info: ModelTensorInfo) => {
|
info.name = info.name.replace(/:0$/, '');
|
});
|
return results;
|
}
|
|
/**
|
* Delete the SavedModel from nodeBackend and delete corresponding session in
|
* the C++ backend if the session is only used by this TFSavedModel.
|
*
|
* @doc {heading: 'Models', subheading: 'SavedModel'}
|
*/
|
dispose() {
|
if (!this.disposed) {
|
this.disposed = true;
|
|
loadedSavedModelPathMap.delete(this.jsid);
|
for (const id of Array.from(loadedSavedModelPathMap.keys())) {
|
const value = loadedSavedModelPathMap.get(id);
|
if (value.sessionId === this.sessionId) {
|
return;
|
}
|
}
|
this.backend.deleteSavedModel(this.sessionId);
|
} else {
|
throw new Error('This SavedModel has already been deleted.');
|
}
|
}
|
|
get outputNodeNames() {
|
if (this.outputNodeNames_ != null) {
|
return this.outputNodeNames_;
|
}
|
this.outputNodeNames_ =
|
Object.keys(this.signature.outputs)
|
.reduce((names: {[key: string]: string}, key: string) => {
|
names[key] = this.signature.outputs[key].name;
|
return names;
|
}, {});
|
return this.outputNodeNames_;
|
}
|
|
/**
|
* Execute the inference for the input tensors.
|
*
|
* @param input The input tensors, when there is single input for the model,
|
* inputs param should be a Tensor. For models with multiple inputs, inputs
|
* params should be in either Tensor[] if the input order is fixed, or
|
* otherwise NamedTensorMap format. The keys in the NamedTensorMap are the
|
* name of input tensors in SavedModel signatureDef. It can be found through
|
* `tf.node.getMetaGraphsFromSavedModel()`.
|
*
|
* For batch inference execution, the tensors for each input need to be
|
* concatenated together. For example with mobilenet, the required input shape
|
* is [1, 244, 244, 3], which represents the [batch, height, width, channel].
|
* If we are provide a batched data of 100 images, the input tensor should be
|
* in the shape of [100, 244, 244, 3].
|
*
|
* @param config Prediction configuration for specifying the batch size.
|
*
|
* @returns Inference result tensors. The output would be single Tensor if
|
* model has single output node, otherwise Tensor[] or NamedTensorMap[] will
|
* be returned for model with multiple outputs.
|
*
|
* @doc {heading: 'Models', subheading: 'SavedModel'}
|
*/
|
predict(inputs: Tensor|Tensor[]|NamedTensorMap, config?: ModelPredictConfig):
|
Tensor|Tensor[]|NamedTensorMap {
|
if (this.disposed) {
|
throw new Error('The TFSavedModel has already been deleted!');
|
} else {
|
let inputTensors: Tensor[] = [];
|
if (inputs instanceof Tensor) {
|
inputTensors.push(inputs);
|
const result = this.backend.runSavedModel(
|
this.sessionId, inputTensors, Object.values(this.signature.inputs),
|
Object.values(this.outputNodeNames));
|
return result.length > 1 ? result : result[0];
|
} else if (Array.isArray(inputs)) {
|
inputTensors = inputs;
|
return this.backend.runSavedModel(
|
this.sessionId, inputTensors, Object.values(this.signature.inputs),
|
Object.values(this.outputNodeNames));
|
} else {
|
const inputTensorNames = Object.keys(this.signature.inputs);
|
const providedInputNames = Object.keys(inputs);
|
if (!stringArraysHaveSameElements(
|
inputTensorNames, providedInputNames)) {
|
throw new Error(`The model signatureDef input names are ${
|
inputTensorNames.join()}, however the provided input names are ${
|
providedInputNames.join()}.`);
|
}
|
const inputNodeNamesArray: ModelTensorInfo[] = [];
|
for (let i = 0; i < inputTensorNames.length; i++) {
|
inputTensors.push(inputs[inputTensorNames[i]]);
|
inputNodeNamesArray.push(this.signature.inputs[inputTensorNames[i]]);
|
}
|
const outputTensorNames = Object.keys(this.outputNodeNames);
|
const outputNodeNamesArray = [];
|
for (let i = 0; i < outputTensorNames.length; i++) {
|
outputNodeNamesArray.push(this.outputNodeNames[outputTensorNames[i]]);
|
}
|
const outputTensors = this.backend.runSavedModel(
|
this.sessionId, inputTensors, inputNodeNamesArray,
|
outputNodeNamesArray);
|
util.assert(
|
outputTensors.length === outputNodeNamesArray.length,
|
() => 'Output tensors do not match output node names, ' +
|
`receive ${outputTensors.length}) output tensors but ` +
|
`there are ${this.outputNodeNames.length} output nodes.`);
|
const outputMap: NamedTensorMap = {};
|
for (let i = 0; i < outputTensorNames.length; i++) {
|
outputMap[outputTensorNames[i]] = outputTensors[i];
|
}
|
return outputMap;
|
}
|
}
|
}
|
|
/**
|
* Execute the inference for the input tensors and return activation
|
* values for specified output node names without batching.
|
*
|
* @param input The input tensors, when there is single input for the model,
|
* inputs param should be a Tensor. For models with multiple inputs, inputs
|
* params should be in either Tensor[] if the input order is fixed, or
|
* otherwise NamedTensorMap format.
|
*
|
* @param outputs string|string[]. List of output node names to retrieve
|
* activation from.
|
*
|
* @returns Activation values for the output nodes result tensors. The return
|
* type matches specified parameter outputs type. The output would be single
|
* Tensor if single output is specified, otherwise Tensor[] for multiple
|
* outputs.
|
*
|
* @doc {heading: 'Models', subheading: 'SavedModel'}
|
*/
|
execute(inputs: Tensor|Tensor[]|NamedTensorMap, outputs: string|string[]):
|
Tensor|Tensor[] {
|
throw new Error('execute() of TFSavedModel is not supported yet.');
|
}
|
}
|
|
/**
|
* Load a TensorFlow SavedModel from disk. TensorFlow SavedModel is different
|
* from TensorFlow.js model format. A SavedModel is a directory containing
|
* serialized signatures and the states needed to run them. The directory has a
|
* saved_model.pb (or saved_model.pbtxt) file storing the actual TensorFlow
|
* program, or model, and a set of named signatures, each identifying a
|
* function. The directory also has a variables directory contains a standard
|
* training checkpoint. The directory may also has a assets directory contains
|
* files used by the TensorFlow graph, for example text files used to initialize
|
* vocabulary tables. These are supported datatypes: float32, int32, complex64,
|
* string.For more information, see this guide:
|
* https://www.tensorflow.org/guide/saved_model.
|
*
|
* @param path The path to the SavedModel.
|
* @param tags The tags of the MetaGraph to load. The available tags of a
|
* SavedModel can be retrieved through tf.node.getMetaGraphsFromSavedModel()
|
* API. Defaults to ['serve'].
|
* @param signature The name of the SignatureDef to load. The available
|
* SignatureDefs of a SavedModel can be retrieved through
|
* tf.node.getMetaGraphsFromSavedModel() API. Defaults to 'serving_default'.
|
*
|
* @doc {heading: 'Models', subheading: 'SavedModel', namespace: 'node'}
|
*/
|
export async function loadSavedModel(
|
path: string, tags = ['serve'],
|
signature = 'serving_default'): Promise<TFSavedModel> {
|
ensureTensorflowBackend();
|
|
const backend = nodeBackend();
|
|
const savedModelInfo = await getMetaGraphsFromSavedModel(path);
|
const signatureDefEntry =
|
getSignatureDefEntryFromMetaGraphInfo(savedModelInfo, tags, signature);
|
|
let sessionId: number;
|
|
for (const id of Array.from(loadedSavedModelPathMap.keys())) {
|
const modelInfo = loadedSavedModelPathMap.get(id);
|
if (modelInfo.path === path &&
|
stringArraysHaveSameElements(modelInfo.tags, tags)) {
|
sessionId = modelInfo.sessionId;
|
}
|
}
|
if (sessionId == null) {
|
// Convert metagraph tags string array to a string.
|
const tagsString = tags.join(',');
|
sessionId = backend.loadSavedModelMetaGraph(path, tagsString);
|
}
|
const id = nextTFSavedModelId++;
|
const savedModel =
|
new TFSavedModel(sessionId, id, signatureDefEntry, backend);
|
loadedSavedModelPathMap.set(id, {path, tags, sessionId});
|
return savedModel;
|
}
|
|
/**
|
* Compare if two unsorted arrays of string have the same elements.
|
* @param arrayA
|
* @param arrayB
|
*/
|
function stringArraysHaveSameElements(
|
arrayA: string[], arrayB: string[]): boolean {
|
if (arrayA.length === arrayB.length &&
|
arrayA.sort().join() === arrayB.sort().join()) {
|
return true;
|
}
|
return false;
|
}
|
|
function mapTFDtypeToJSDtype(tfDtype: string): DataType {
|
switch (tfDtype) {
|
case 'DT_FLOAT':
|
return 'float32';
|
case 'DT_INT64':
|
case 'DT_INT32':
|
case 'DT_UINT8':
|
return 'int32';
|
case 'DT_BOOL':
|
return 'bool';
|
case 'DT_COMPLEX64':
|
return 'complex64';
|
case 'DT_STRING':
|
return 'string';
|
default:
|
throw new Error(
|
'Unsupported tensor DataType: ' + tfDtype +
|
', try to modify the model in python to convert the datatype');
|
}
|
}
|
|
export function getNumOfSavedModels() {
|
ensureTensorflowBackend();
|
const backend = nodeBackend();
|
return backend.getNumOfSavedModels();
|
}
|