import { FaceDetection } from '../classes/FaceDetection';
|
import { Rect } from '../classes/Rect';
|
import { env } from '../env/index';
|
import { createCanvas } from './createCanvas';
|
import { getContext2dOrThrow } from './getContext2dOrThrow';
|
import { imageTensorToCanvas } from './imageTensorToCanvas';
|
import { toNetInput } from './toNetInput';
|
import { TNetInput } from './types';
|
|
/**
|
* Extracts the image regions containing the detected faces.
|
*
|
* @param input The image that face detection has been performed on.
|
* @param detections The face detection results or face bounding boxes for that image.
|
* @returns The Canvases of the corresponding image region for each detected face.
|
*/
|
export async function extractFaces(input: TNetInput, detections: Array<FaceDetection | Rect>): Promise<HTMLCanvasElement[]> {
|
const { Canvas } = env.getEnv();
|
let canvas = input as HTMLCanvasElement;
|
if (!(input instanceof Canvas)) {
|
const netInput = await toNetInput(input);
|
if (netInput.batchSize > 1) throw new Error('extractFaces - batchSize > 1 not supported');
|
const tensorOrCanvas = netInput.getInput(0);
|
canvas = tensorOrCanvas instanceof Canvas ? tensorOrCanvas : await imageTensorToCanvas(tensorOrCanvas);
|
}
|
const ctx = getContext2dOrThrow(canvas);
|
const boxes = detections
|
.map((det) => (det instanceof FaceDetection ? det.forSize(canvas.width, canvas.height).box.floor() : det))
|
.map((box) => box.clipAtImageBorders(canvas.width, canvas.height));
|
return boxes.map(({ x, y, width, height }) => {
|
const faceImg = createCanvas({ width, height });
|
if (width > 0 && height > 0) getContext2dOrThrow(faceImg).putImageData(ctx.getImageData(x, y, width, height), 0, 0);
|
return faceImg;
|
});
|
}
|