gx
chenyc
2025-06-12 7b72ac13a83764a662159d4a49b7fffb90476ecb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import * as tf from '../../dist/tfjs.esm';
 
import { ExtractWeightsFunction, ParamMapping, ConvParams, extractWeightsFactory } from '../common/index';
import { MobileNetV1, NetParams, PointwiseConvParams, PredictionLayerParams } from './types';
 
function extractorsFactory(extractWeights: ExtractWeightsFunction, paramMappings: ParamMapping[]) {
  function extractDepthwiseConvParams(numChannels: number, mappedPrefix: string): MobileNetV1.DepthwiseConvParams {
    const filters = tf.tensor4d(extractWeights(3 * 3 * numChannels), [3, 3, numChannels, 1]);
    const batch_norm_scale = tf.tensor1d(extractWeights(numChannels));
    const batch_norm_offset = tf.tensor1d(extractWeights(numChannels));
    const batch_norm_mean = tf.tensor1d(extractWeights(numChannels));
    const batch_norm_variance = tf.tensor1d(extractWeights(numChannels));
 
    paramMappings.push(
      { paramPath: `${mappedPrefix}/filters` },
      { paramPath: `${mappedPrefix}/batch_norm_scale` },
      { paramPath: `${mappedPrefix}/batch_norm_offset` },
      { paramPath: `${mappedPrefix}/batch_norm_mean` },
      { paramPath: `${mappedPrefix}/batch_norm_variance` },
    );
 
    return {
      filters,
      batch_norm_scale,
      batch_norm_offset,
      batch_norm_mean,
      batch_norm_variance,
    };
  }
 
  function extractConvParams(
    channelsIn: number,
    channelsOut: number,
    filterSize: number,
    mappedPrefix: string,
    isPointwiseConv?: boolean,
  ): ConvParams {
    const filters = tf.tensor4d(
      extractWeights(channelsIn * channelsOut * filterSize * filterSize),
      [filterSize, filterSize, channelsIn, channelsOut],
    );
    const bias = tf.tensor1d(extractWeights(channelsOut));
 
    paramMappings.push(
      { paramPath: `${mappedPrefix}/filters` },
      { paramPath: `${mappedPrefix}/${isPointwiseConv ? 'batch_norm_offset' : 'bias'}` },
    );
 
    return { filters, bias };
  }
 
  function extractPointwiseConvParams(
    channelsIn: number,
    channelsOut: number,
    filterSize: number,
    mappedPrefix: string,
  ): PointwiseConvParams {
    const {
      filters,
      bias,
    } = extractConvParams(channelsIn, channelsOut, filterSize, mappedPrefix, true);
 
    return {
      filters,
      batch_norm_offset: bias,
    };
  }
 
  function extractConvPairParams(
    channelsIn: number,
    channelsOut: number,
    mappedPrefix: string,
  ): MobileNetV1.ConvPairParams {
    const depthwise_conv = extractDepthwiseConvParams(channelsIn, `${mappedPrefix}/depthwise_conv`);
    const pointwise_conv = extractPointwiseConvParams(channelsIn, channelsOut, 1, `${mappedPrefix}/pointwise_conv`);
 
    return { depthwise_conv, pointwise_conv };
  }
 
  function extractMobilenetV1Params(): MobileNetV1.Params {
    const conv_0 = extractPointwiseConvParams(3, 32, 3, 'mobilenetv1/conv_0');
    const conv_1 = extractConvPairParams(32, 64, 'mobilenetv1/conv_1');
    const conv_2 = extractConvPairParams(64, 128, 'mobilenetv1/conv_2');
    const conv_3 = extractConvPairParams(128, 128, 'mobilenetv1/conv_3');
    const conv_4 = extractConvPairParams(128, 256, 'mobilenetv1/conv_4');
    const conv_5 = extractConvPairParams(256, 256, 'mobilenetv1/conv_5');
    const conv_6 = extractConvPairParams(256, 512, 'mobilenetv1/conv_6');
    const conv_7 = extractConvPairParams(512, 512, 'mobilenetv1/conv_7');
    const conv_8 = extractConvPairParams(512, 512, 'mobilenetv1/conv_8');
    const conv_9 = extractConvPairParams(512, 512, 'mobilenetv1/conv_9');
    const conv_10 = extractConvPairParams(512, 512, 'mobilenetv1/conv_10');
    const conv_11 = extractConvPairParams(512, 512, 'mobilenetv1/conv_11');
    const conv_12 = extractConvPairParams(512, 1024, 'mobilenetv1/conv_12');
    const conv_13 = extractConvPairParams(1024, 1024, 'mobilenetv1/conv_13');
    return {
      conv_0,
      conv_1,
      conv_2,
      conv_3,
      conv_4,
      conv_5,
      conv_6,
      conv_7,
      conv_8,
      conv_9,
      conv_10,
      conv_11,
      conv_12,
      conv_13,
    };
  }
 
  function extractPredictionLayerParams(): PredictionLayerParams {
    const conv_0 = extractPointwiseConvParams(1024, 256, 1, 'prediction_layer/conv_0');
    const conv_1 = extractPointwiseConvParams(256, 512, 3, 'prediction_layer/conv_1');
    const conv_2 = extractPointwiseConvParams(512, 128, 1, 'prediction_layer/conv_2');
    const conv_3 = extractPointwiseConvParams(128, 256, 3, 'prediction_layer/conv_3');
    const conv_4 = extractPointwiseConvParams(256, 128, 1, 'prediction_layer/conv_4');
    const conv_5 = extractPointwiseConvParams(128, 256, 3, 'prediction_layer/conv_5');
    const conv_6 = extractPointwiseConvParams(256, 64, 1, 'prediction_layer/conv_6');
    const conv_7 = extractPointwiseConvParams(64, 128, 3, 'prediction_layer/conv_7');
    const box_encoding_0_predictor = extractConvParams(512, 12, 1, 'prediction_layer/box_predictor_0/box_encoding_predictor');
    const class_predictor_0 = extractConvParams(512, 9, 1, 'prediction_layer/box_predictor_0/class_predictor');
    const box_encoding_1_predictor = extractConvParams(1024, 24, 1, 'prediction_layer/box_predictor_1/box_encoding_predictor');
    const class_predictor_1 = extractConvParams(1024, 18, 1, 'prediction_layer/box_predictor_1/class_predictor');
    const box_encoding_2_predictor = extractConvParams(512, 24, 1, 'prediction_layer/box_predictor_2/box_encoding_predictor');
    const class_predictor_2 = extractConvParams(512, 18, 1, 'prediction_layer/box_predictor_2/class_predictor');
    const box_encoding_3_predictor = extractConvParams(256, 24, 1, 'prediction_layer/box_predictor_3/box_encoding_predictor');
    const class_predictor_3 = extractConvParams(256, 18, 1, 'prediction_layer/box_predictor_3/class_predictor');
    const box_encoding_4_predictor = extractConvParams(256, 24, 1, 'prediction_layer/box_predictor_4/box_encoding_predictor');
    const class_predictor_4 = extractConvParams(256, 18, 1, 'prediction_layer/box_predictor_4/class_predictor');
    const box_encoding_5_predictor = extractConvParams(128, 24, 1, 'prediction_layer/box_predictor_5/box_encoding_predictor');
    const class_predictor_5 = extractConvParams(128, 18, 1, 'prediction_layer/box_predictor_5/class_predictor');
 
    const box_predictor_0 = {
      box_encoding_predictor: box_encoding_0_predictor,
      class_predictor: class_predictor_0,
    };
    const box_predictor_1 = {
      box_encoding_predictor: box_encoding_1_predictor,
      class_predictor: class_predictor_1,
    };
    const box_predictor_2 = {
      box_encoding_predictor: box_encoding_2_predictor,
      class_predictor: class_predictor_2,
    };
    const box_predictor_3 = {
      box_encoding_predictor: box_encoding_3_predictor,
      class_predictor: class_predictor_3,
    };
    const box_predictor_4 = {
      box_encoding_predictor: box_encoding_4_predictor,
      class_predictor: class_predictor_4,
    };
    const box_predictor_5 = {
      box_encoding_predictor: box_encoding_5_predictor,
      class_predictor: class_predictor_5,
    };
    return {
      conv_0,
      conv_1,
      conv_2,
      conv_3,
      conv_4,
      conv_5,
      conv_6,
      conv_7,
      box_predictor_0,
      box_predictor_1,
      box_predictor_2,
      box_predictor_3,
      box_predictor_4,
      box_predictor_5,
    };
  }
 
  return {
    extractMobilenetV1Params,
    extractPredictionLayerParams,
  };
}
 
export function extractParams(weights: Float32Array): { params: NetParams, paramMappings: ParamMapping[] } {
  const paramMappings: ParamMapping[] = [];
  const {
    extractWeights,
    getRemainingWeights,
  } = extractWeightsFactory(weights);
  const {
    extractMobilenetV1Params,
    extractPredictionLayerParams,
  } = extractorsFactory(extractWeights, paramMappings);
  const mobilenetv1 = extractMobilenetV1Params();
  const prediction_layer = extractPredictionLayerParams();
  const extra_dim = tf.tensor3d(
    extractWeights(5118 * 4),
    [1, 5118, 4],
  );
  const output_layer = {
    extra_dim,
  };
  paramMappings.push({ paramPath: 'output_layer/extra_dim' });
  if (getRemainingWeights().length !== 0) {
    throw new Error(`weights remaing after extract: ${getRemainingWeights().length}`);
  }
 
  return {
    params: {
      mobilenetv1,
      prediction_layer,
      output_layer,
    },
    paramMappings,
  };
}