import { convertToTensor } from '../../tensor_util_env'; import { assertShapesMatch } from '../../util'; import { Reduction } from '../loss_ops_utils'; import { mul } from '../mul'; import { op } from '../operation'; import { scalar } from '../scalar'; import { sub } from '../sub'; import { sum } from '../sum'; import { computeWeightedLoss } from './compute_weighted_loss'; /** * Computes the cosine distance loss between two tensors. * * @param labels The ground truth output tensor, same dimensions as * 'predictions'. * @param predictions The predicted outputs. * @param axis The dimension along which the cosine distance is computed. * @param weights Tensor whose rank is either 0, or the same rank as * `labels`, and must be broadcastable to `labels` (i.e., all dimensions * must be either `1`, or the same as the corresponding `losses` * dimension). * @param reduction Type of reduction to apply to loss. Should be of type * `Reduction` * * @doc {heading: 'Training', subheading: 'Losses', namespace: 'losses'} */ function cosineDistance_(labels, predictions, axis, weights, reduction = Reduction.SUM_BY_NONZERO_WEIGHTS) { const $labels = convertToTensor(labels, 'labels', 'cosineDistance'); const $predictions = convertToTensor(predictions, 'predictions', 'cosineDistance'); let $weights = null; if (weights != null) { $weights = convertToTensor(weights, 'weights', 'cosineDistance'); } assertShapesMatch($labels.shape, $predictions.shape, 'Error in cosineDistance: '); const one = scalar(1); const losses = sub(one, sum(mul($labels, $predictions), axis, true)); return computeWeightedLoss(losses, $weights, reduction); } export const cosineDistance = /* @__PURE__ */ op({ cosineDistance_ }); //# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoiY29zaW5lX2Rpc3RhbmNlLmpzIiwic291cmNlUm9vdCI6IiIsInNvdXJjZXMiOlsiLi4vLi4vLi4vLi4vLi4vLi4vLi4vdGZqcy1jb3JlL3NyYy9vcHMvbG9zc2VzL2Nvc2luZV9kaXN0YW5jZS50cyJdLCJuYW1lcyI6W10sIm1hcHBpbmdzIjoiQUFpQkEsT0FBTyxFQUFDLGVBQWUsRUFBQyxNQUFNLHVCQUF1QixDQUFDO0FBRXRELE9BQU8sRUFBQyxpQkFBaUIsRUFBQyxNQUFNLFlBQVksQ0FBQztBQUM3QyxPQUFPLEVBQUMsU0FBUyxFQUFDLE1BQU0sbUJBQW1CLENBQUM7QUFDNUMsT0FBTyxFQUFDLEdBQUcsRUFBQyxNQUFNLFFBQVEsQ0FBQztBQUMzQixPQUFPLEVBQUMsRUFBRSxFQUFDLE1BQU0sY0FBYyxDQUFDO0FBQ2hDLE9BQU8sRUFBQyxNQUFNLEVBQUMsTUFBTSxXQUFXLENBQUM7QUFDakMsT0FBTyxFQUFDLEdBQUcsRUFBQyxNQUFNLFFBQVEsQ0FBQztBQUMzQixPQUFPLEVBQUMsR0FBRyxFQUFDLE1BQU0sUUFBUSxDQUFDO0FBRTNCLE9BQU8sRUFBQyxtQkFBbUIsRUFBQyxNQUFNLHlCQUF5QixDQUFDO0FBRTVEOzs7Ozs7Ozs7Ozs7Ozs7R0FlRztBQUNILFNBQVMsZUFBZSxDQUNwQixNQUFvQixFQUFFLFdBQXlCLEVBQUUsSUFBWSxFQUM3RCxPQUEyQixFQUMzQixTQUFTLEdBQUcsU0FBUyxDQUFDLHNCQUFzQjtJQUM5QyxNQUFNLE9BQU8sR0FBRyxlQUFlLENBQUMsTUFBTSxFQUFFLFFBQVEsRUFBRSxnQkFBZ0IsQ0FBQyxDQUFDO0lBQ3BFLE1BQU0sWUFBWSxHQUNkLGVBQWUsQ0FBQyxXQUFXLEVBQUUsYUFBYSxFQUFFLGdCQUFnQixDQUFDLENBQUM7SUFDbEUsSUFBSSxRQUFRLEdBQVcsSUFBSSxDQUFDO0lBQzVCLElBQUksT0FBTyxJQUFJLElBQUksRUFBRTtRQUNuQixRQUFRLEdBQUcsZUFBZSxDQUFDLE9BQU8sRUFBRSxTQUFTLEVBQUUsZ0JBQWdCLENBQUMsQ0FBQztLQUNsRTtJQUNELGlCQUFpQixDQUNiLE9BQU8sQ0FBQyxLQUFLLEVBQUUsWUFBWSxDQUFDLEtBQUssRUFBRSwyQkFBMkIsQ0FBQyxDQUFDO0lBRXBFLE1BQU0sR0FBRyxHQUFHLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQztJQUN0QixNQUFNLE1BQU0sR0FBRyxHQUFHLENBQUMsR0FBRyxFQUFFLEdBQUcsQ0FBQyxHQUFHLENBQUMsT0FBTyxFQUFFLFlBQVksQ0FBQyxFQUFFLElBQUksRUFBRSxJQUFJLENBQUMsQ0FBQyxDQUFDO0lBQ3JFLE9BQU8sbUJBQW1CLENBQUMsTUFBTSxFQUFFLFFBQVEsRUFBRSxTQUFTLENBQUMsQ0FBQztBQUMxRCxDQUFDO0FBQ0QsTUFBTSxDQUFDLE1BQU0sY0FBYyxHQUFHLGVBQWUsQ0FBQyxFQUFFLENBQUMsRUFBQyxlQUFlLEVBQUMsQ0FBQyxDQUFDIiwic291cmNlc0NvbnRlbnQiOlsiLyoqXG4gKiBAbGljZW5zZVxuICogQ29weXJpZ2h0IDIwMjAgR29vZ2xlIExMQy4gQWxsIFJpZ2h0cyBSZXNlcnZlZC5cbiAqIExpY2Vuc2VkIHVuZGVyIHRoZSBBcGFjaGUgTGljZW5zZSwgVmVyc2lvbiAyLjAgKHRoZSBcIkxpY2Vuc2VcIik7XG4gKiB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuXG4gKiBZb3UgbWF5IG9idGFpbiBhIGNvcHkgb2YgdGhlIExpY2Vuc2UgYXRcbiAqXG4gKiBodHRwOi8vd3d3LmFwYWNoZS5vcmcvbGljZW5zZXMvTElDRU5TRS0yLjBcbiAqXG4gKiBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlXG4gKiBkaXN0cmlidXRlZCB1bmRlciB0aGUgTGljZW5zZSBpcyBkaXN0cmlidXRlZCBvbiBhbiBcIkFTIElTXCIgQkFTSVMsXG4gKiBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC5cbiAqIFNlZSB0aGUgTGljZW5zZSBmb3IgdGhlIHNwZWNpZmljIGxhbmd1YWdlIGdvdmVybmluZyBwZXJtaXNzaW9ucyBhbmRcbiAqIGxpbWl0YXRpb25zIHVuZGVyIHRoZSBMaWNlbnNlLlxuICogPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1cbiAqL1xuaW1wb3J0IHtUZW5zb3J9IGZyb20gJy4uLy4uL3RlbnNvcic7XG5pbXBvcnQge2NvbnZlcnRUb1RlbnNvcn0gZnJvbSAnLi4vLi4vdGVuc29yX3V0aWxfZW52JztcbmltcG9ydCB7VGVuc29yTGlrZX0gZnJvbSAnLi4vLi4vdHlwZXMnO1xuaW1wb3J0IHthc3NlcnRTaGFwZXNNYXRjaH0gZnJvbSAnLi4vLi4vdXRpbCc7XG5pbXBvcnQge1JlZHVjdGlvbn0gZnJvbSAnLi4vbG9zc19vcHNfdXRpbHMnO1xuaW1wb3J0IHttdWx9IGZyb20gJy4uL211bCc7XG5pbXBvcnQge29wfSBmcm9tICcuLi9vcGVyYXRpb24nO1xuaW1wb3J0IHtzY2FsYXJ9IGZyb20gJy4uL3NjYWxhcic7XG5pbXBvcnQge3N1Yn0gZnJvbSAnLi4vc3ViJztcbmltcG9ydCB7c3VtfSBmcm9tICcuLi9zdW0nO1xuXG5pbXBvcnQge2NvbXB1dGVXZWlnaHRlZExvc3N9IGZyb20gJy4vY29tcHV0ZV93ZWlnaHRlZF9sb3NzJztcblxuLyoqXG4gKiBDb21wdXRlcyB0aGUgY29zaW5lIGRpc3RhbmNlIGxvc3MgYmV0d2VlbiB0d28gdGVuc29ycy5cbiAqXG4gKiBAcGFyYW0gbGFiZWxzIFRoZSBncm91bmQgdHJ1dGggb3V0cHV0IHRlbnNvciwgc2FtZSBkaW1lbnNpb25zIGFzXG4gKiAgICAncHJlZGljdGlvbnMnLlxuICogQHBhcmFtIHByZWRpY3Rpb25zIFRoZSBwcmVkaWN0ZWQgb3V0cHV0cy5cbiAqIEBwYXJhbSBheGlzIFRoZSBkaW1lbnNpb24gYWxvbmcgd2hpY2ggdGhlIGNvc2luZSBkaXN0YW5jZSBpcyBjb21wdXRlZC5cbiAqIEBwYXJhbSB3ZWlnaHRzIFRlbnNvciB3aG9zZSByYW5rIGlzIGVpdGhlciAwLCBvciB0aGUgc2FtZSByYW5rIGFzXG4gKiAgICBgbGFiZWxzYCwgYW5kIG11c3QgYmUgYnJvYWRjYXN0YWJsZSB0byBgbGFiZWxzYCAoaS5lLiwgYWxsIGRpbWVuc2lvbnNcbiAqICAgIG11c3QgYmUgZWl0aGVyIGAxYCwgb3IgdGhlIHNhbWUgYXMgdGhlIGNvcnJlc3BvbmRpbmcgYGxvc3Nlc2BcbiAqICAgIGRpbWVuc2lvbikuXG4gKiBAcGFyYW0gcmVkdWN0aW9uIFR5cGUgb2YgcmVkdWN0aW9uIHRvIGFwcGx5IHRvIGxvc3MuIFNob3VsZCBiZSBvZiB0eXBlXG4gKiAgICBgUmVkdWN0aW9uYFxuICpcbiAqIEBkb2Mge2hlYWRpbmc6ICdUcmFpbmluZycsIHN1YmhlYWRpbmc6ICdMb3NzZXMnLCBuYW1lc3BhY2U6ICdsb3NzZXMnfVxuICovXG5mdW5jdGlvbiBjb3NpbmVEaXN0YW5jZV88VCBleHRlbmRzIFRlbnNvciwgTyBleHRlbmRzIFRlbnNvcj4oXG4gICAgbGFiZWxzOiBUfFRlbnNvckxpa2UsIHByZWRpY3Rpb25zOiBUfFRlbnNvckxpa2UsIGF4aXM6IG51bWJlcixcbiAgICB3ZWlnaHRzPzogVGVuc29yfFRlbnNvckxpa2UsXG4gICAgcmVkdWN0aW9uID0gUmVkdWN0aW9uLlNVTV9CWV9OT05aRVJPX1dFSUdIVFMpOiBPIHtcbiAgY29uc3QgJGxhYmVscyA9IGNvbnZlcnRUb1RlbnNvcihsYWJlbHMsICdsYWJlbHMnLCAnY29zaW5lRGlzdGFuY2UnKTtcbiAgY29uc3QgJHByZWRpY3Rpb25zID1cbiAgICAgIGNvbnZlcnRUb1RlbnNvcihwcmVkaWN0aW9ucywgJ3ByZWRpY3Rpb25zJywgJ2Nvc2luZURpc3RhbmNlJyk7XG4gIGxldCAkd2VpZ2h0czogVGVuc29yID0gbnVsbDtcbiAgaWYgKHdlaWdodHMgIT0gbnVsbCkge1xuICAgICR3ZWlnaHRzID0gY29udmVydFRvVGVuc29yKHdlaWdodHMsICd3ZWlnaHRzJywgJ2Nvc2luZURpc3RhbmNlJyk7XG4gIH1cbiAgYXNzZXJ0U2hhcGVzTWF0Y2goXG4gICAgICAkbGFiZWxzLnNoYXBlLCAkcHJlZGljdGlvbnMuc2hhcGUsICdFcnJvciBpbiBjb3NpbmVEaXN0YW5jZTogJyk7XG5cbiAgY29uc3Qgb25lID0gc2NhbGFyKDEpO1xuICBjb25zdCBsb3NzZXMgPSBzdWIob25lLCBzdW0obXVsKCRsYWJlbHMsICRwcmVkaWN0aW9ucyksIGF4aXMsIHRydWUpKTtcbiAgcmV0dXJuIGNvbXB1dGVXZWlnaHRlZExvc3MobG9zc2VzLCAkd2VpZ2h0cywgcmVkdWN0aW9uKTtcbn1cbmV4cG9ydCBjb25zdCBjb3NpbmVEaXN0YW5jZSA9IC8qIEBfX1BVUkVfXyAqLyBvcCh7Y29zaW5lRGlzdGFuY2VffSk7XG4iXX0=