/** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ import { ENGINE } from '../engine'; import { MaxPool } from '../kernel_names'; import { convertToTensor } from '../tensor_util_env'; import * as util from '../util'; import * as conv_util from './conv_util'; import { op } from './operation'; import { reshape } from './reshape'; /** * Computes the 2D max pooling of an image. * * @param x The input tensor, of rank 4 or rank 3 of shape * `[batch, height, width, inChannels]`. If rank 3, batch of 1 is assumed. * @param filterSize The filter size: `[filterHeight, filterWidth]`. If * `filterSize` is a single number, then `filterHeight == filterWidth`. * @param strides The strides of the pooling: `[strideHeight, strideWidth]`. If * `strides` is a single number, then `strideHeight == strideWidth`. * @param dilations The dilation rates: `[dilationHeight, dilationWidth]` * in which we sample input values across the height and width dimensions * in dilated pooling. Defaults to `[1, 1]`. If `dilations` is a single * number, then `dilationHeight == dilationWidth`. If it is greater than * 1, then all values of `strides` must be 1. * @param pad The type of padding algorithm. * - `same` and stride 1: output will be of same size as input, * regardless of filter size. * - `valid`: output will be smaller than input if filter is larger * than 1x1. * - For more info, see this guide: * [https://www.tensorflow.org/api_docs/python/tf/nn/convolution]( * https://www.tensorflow.org/api_docs/python/tf/nn/convolution) * @param dimRoundingMode A string from: 'ceil', 'round', 'floor'. If none is * provided, it will default to truncate. */ function maxPool_(x, filterSize, strides, pad, dimRoundingMode) { const $x = convertToTensor(x, 'x', 'maxPool'); const dilations = 1; let x4D = $x; let reshapedTo4D = false; if ($x.rank === 3) { reshapedTo4D = true; x4D = reshape($x, [1, $x.shape[0], $x.shape[1], $x.shape[2]]); } util.assert(x4D.rank === 4, () => `Error in maxPool: input must be rank 4 but got rank ${x4D.rank}.`); util.assert(conv_util.eitherStridesOrDilationsAreOne(strides, dilations), () => 'Error in maxPool: Either strides or dilations must be 1. ' + `Got strides ${strides} and dilations '${dilations}'`); conv_util.checkPadOnDimRoundingMode('maxPool', pad, dimRoundingMode); const inputs = { x: x4D }; const attrs = { filterSize, strides, pad, dimRoundingMode }; // tslint:disable-next-line: no-unnecessary-type-assertion const res = ENGINE.runKernel(MaxPool, inputs, attrs); if (reshapedTo4D) { return reshape(res, [res.shape[1], res.shape[2], res.shape[3]]); } return res; } export const maxPool = /* @__PURE__ */ op({ maxPool_ }); //# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoibWF4X3Bvb2wuanMiLCJzb3VyY2VSb290IjoiIiwic291cmNlcyI6WyIuLi8uLi8uLi8uLi8uLi8uLi90ZmpzLWNvcmUvc3JjL29wcy9tYXhfcG9vbC50cyJdLCJuYW1lcyI6W10sIm1hcHBpbmdzIjoiQUFBQTs7Ozs7Ozs7Ozs7Ozs7O0dBZUc7QUFFSCxPQUFPLEVBQUMsTUFBTSxFQUFDLE1BQU0sV0FBVyxDQUFDO0FBQ2pDLE9BQU8sRUFBQyxPQUFPLEVBQThCLE1BQU0saUJBQWlCLENBQUM7QUFJckUsT0FBTyxFQUFDLGVBQWUsRUFBQyxNQUFNLG9CQUFvQixDQUFDO0FBRW5ELE9BQU8sS0FBSyxJQUFJLE1BQU0sU0FBUyxDQUFDO0FBRWhDLE9BQU8sS0FBSyxTQUFTLE1BQU0sYUFBYSxDQUFDO0FBQ3pDLE9BQU8sRUFBQyxFQUFFLEVBQUMsTUFBTSxhQUFhLENBQUM7QUFDL0IsT0FBTyxFQUFDLE9BQU8sRUFBQyxNQUFNLFdBQVcsQ0FBQztBQUVsQzs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7O0dBd0JHO0FBQ0gsU0FBUyxRQUFRLENBQ2IsQ0FBZSxFQUFFLFVBQW1DLEVBQ3BELE9BQWdDLEVBQ2hDLEdBQW9ELEVBQ3BELGVBQXdDO0lBQzFDLE1BQU0sRUFBRSxHQUFHLGVBQWUsQ0FBQyxDQUFDLEVBQUUsR0FBRyxFQUFFLFNBQVMsQ0FBQyxDQUFDO0lBQzlDLE1BQU0sU0FBUyxHQUFHLENBQUMsQ0FBQztJQUVwQixJQUFJLEdBQUcsR0FBRyxFQUFjLENBQUM7SUFDekIsSUFBSSxZQUFZLEdBQUcsS0FBSyxDQUFDO0lBQ3pCLElBQUksRUFBRSxDQUFDLElBQUksS0FBSyxDQUFDLEVBQUU7UUFDakIsWUFBWSxHQUFHLElBQUksQ0FBQztRQUNwQixHQUFHLEdBQUcsT0FBTyxDQUFDLEVBQUUsRUFBRSxDQUFDLENBQUMsRUFBRSxFQUFFLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxFQUFFLEVBQUUsQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLEVBQUUsRUFBRSxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7S0FDL0Q7SUFFRCxJQUFJLENBQUMsTUFBTSxDQUNQLEdBQUcsQ0FBQyxJQUFJLEtBQUssQ0FBQyxFQUNkLEdBQUcsRUFBRSxDQUFDLHVEQUF1RCxHQUFHLENBQUMsSUFBSSxHQUFHLENBQUMsQ0FBQztJQUM5RSxJQUFJLENBQUMsTUFBTSxDQUNQLFNBQVMsQ0FBQyw4QkFBOEIsQ0FBQyxPQUFPLEVBQUUsU0FBUyxDQUFDLEVBQzVELEdBQUcsRUFBRSxDQUFDLDJEQUEyRDtRQUM3RCxlQUFlLE9BQU8sbUJBQW1CLFNBQVMsR0FBRyxDQUFDLENBQUM7SUFDL0QsU0FBUyxDQUFDLHlCQUF5QixDQUFDLFNBQVMsRUFBRSxHQUFHLEVBQUUsZUFBZSxDQUFDLENBQUM7SUFDckUsTUFBTSxNQUFNLEdBQWtCLEVBQUMsQ0FBQyxFQUFFLEdBQUcsRUFBQyxDQUFDO0lBQ3ZDLE1BQU0sS0FBSyxHQUFpQixFQUFDLFVBQVUsRUFBRSxPQUFPLEVBQUUsR0FBRyxFQUFFLGVBQWUsRUFBQyxDQUFDO0lBRXhFLDBEQUEwRDtJQUMxRCxNQUFNLEdBQUcsR0FBRyxNQUFNLENBQUMsU0FBUyxDQUNaLE9BQU8sRUFBRSxNQUFtQyxFQUM1QyxLQUFnQyxDQUFNLENBQUM7SUFFdkQsSUFBSSxZQUFZLEVBQUU7UUFDaEIsT0FBTyxPQUFPLENBQUMsR0FBRyxFQUFFLENBQUMsR0FBRyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsRUFBRSxHQUFHLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxFQUFFLEdBQUcsQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBTSxDQUFDO0tBQ3RFO0lBQ0QsT0FBTyxHQUFHLENBQUM7QUFDYixDQUFDO0FBRUQsTUFBTSxDQUFDLE1BQU0sT0FBTyxHQUFHLGVBQWUsQ0FBQyxFQUFFLENBQUMsRUFBQyxRQUFRLEVBQUMsQ0FBQyxDQUFDIiwic291cmNlc0NvbnRlbnQiOlsiLyoqXG4gKiBAbGljZW5zZVxuICogQ29weXJpZ2h0IDIwMjAgR29vZ2xlIExMQy4gQWxsIFJpZ2h0cyBSZXNlcnZlZC5cbiAqIExpY2Vuc2VkIHVuZGVyIHRoZSBBcGFjaGUgTGljZW5zZSwgVmVyc2lvbiAyLjAgKHRoZSBcIkxpY2Vuc2VcIik7XG4gKiB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuXG4gKiBZb3UgbWF5IG9idGFpbiBhIGNvcHkgb2YgdGhlIExpY2Vuc2UgYXRcbiAqXG4gKiBodHRwOi8vd3d3LmFwYWNoZS5vcmcvbGljZW5zZXMvTElDRU5TRS0yLjBcbiAqXG4gKiBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlXG4gKiBkaXN0cmlidXRlZCB1bmRlciB0aGUgTGljZW5zZSBpcyBkaXN0cmlidXRlZCBvbiBhbiBcIkFTIElTXCIgQkFTSVMsXG4gKiBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC5cbiAqIFNlZSB0aGUgTGljZW5zZSBmb3IgdGhlIHNwZWNpZmljIGxhbmd1YWdlIGdvdmVybmluZyBwZXJtaXNzaW9ucyBhbmRcbiAqIGxpbWl0YXRpb25zIHVuZGVyIHRoZSBMaWNlbnNlLlxuICogPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1cbiAqL1xuXG5pbXBvcnQge0VOR0lORX0gZnJvbSAnLi4vZW5naW5lJztcbmltcG9ydCB7TWF4UG9vbCwgTWF4UG9vbEF0dHJzLCBNYXhQb29sSW5wdXRzfSBmcm9tICcuLi9rZXJuZWxfbmFtZXMnO1xuaW1wb3J0IHtOYW1lZEF0dHJNYXB9IGZyb20gJy4uL2tlcm5lbF9yZWdpc3RyeSc7XG5pbXBvcnQge1RlbnNvcjNELCBUZW5zb3I0RH0gZnJvbSAnLi4vdGVuc29yJztcbmltcG9ydCB7TmFtZWRUZW5zb3JNYXB9IGZyb20gJy4uL3RlbnNvcl90eXBlcyc7XG5pbXBvcnQge2NvbnZlcnRUb1RlbnNvcn0gZnJvbSAnLi4vdGVuc29yX3V0aWxfZW52JztcbmltcG9ydCB7VGVuc29yTGlrZX0gZnJvbSAnLi4vdHlwZXMnO1xuaW1wb3J0ICogYXMgdXRpbCBmcm9tICcuLi91dGlsJztcblxuaW1wb3J0ICogYXMgY29udl91dGlsIGZyb20gJy4vY29udl91dGlsJztcbmltcG9ydCB7b3B9IGZyb20gJy4vb3BlcmF0aW9uJztcbmltcG9ydCB7cmVzaGFwZX0gZnJvbSAnLi9yZXNoYXBlJztcblxuLyoqXG4gKiBDb21wdXRlcyB0aGUgMkQgbWF4IHBvb2xpbmcgb2YgYW4gaW1hZ2UuXG4gKlxuICogQHBhcmFtIHggVGhlIGlucHV0IHRlbnNvciwgb2YgcmFuayA0IG9yIHJhbmsgMyBvZiBzaGFwZVxuICogICAgIGBbYmF0Y2gsIGhlaWdodCwgd2lkdGgsIGluQ2hhbm5lbHNdYC4gSWYgcmFuayAzLCBiYXRjaCBvZiAxIGlzIGFzc3VtZWQuXG4gKiBAcGFyYW0gZmlsdGVyU2l6ZSBUaGUgZmlsdGVyIHNpemU6IGBbZmlsdGVySGVpZ2h0LCBmaWx0ZXJXaWR0aF1gLiBJZlxuICogICAgIGBmaWx0ZXJTaXplYCBpcyBhIHNpbmdsZSBudW1iZXIsIHRoZW4gYGZpbHRlckhlaWdodCA9PSBmaWx0ZXJXaWR0aGAuXG4gKiBAcGFyYW0gc3RyaWRlcyBUaGUgc3RyaWRlcyBvZiB0aGUgcG9vbGluZzogYFtzdHJpZGVIZWlnaHQsIHN0cmlkZVdpZHRoXWAuIElmXG4gKiAgICAgYHN0cmlkZXNgIGlzIGEgc2luZ2xlIG51bWJlciwgdGhlbiBgc3RyaWRlSGVpZ2h0ID09IHN0cmlkZVdpZHRoYC5cbiAqIEBwYXJhbSBkaWxhdGlvbnMgVGhlIGRpbGF0aW9uIHJhdGVzOiBgW2RpbGF0aW9uSGVpZ2h0LCBkaWxhdGlvbldpZHRoXWBcbiAqICAgICBpbiB3aGljaCB3ZSBzYW1wbGUgaW5wdXQgdmFsdWVzIGFjcm9zcyB0aGUgaGVpZ2h0IGFuZCB3aWR0aCBkaW1lbnNpb25zXG4gKiAgICAgaW4gZGlsYXRlZCBwb29saW5nLiBEZWZhdWx0cyB0byBgWzEsIDFdYC4gSWYgYGRpbGF0aW9uc2AgaXMgYSBzaW5nbGVcbiAqICAgICBudW1iZXIsIHRoZW4gYGRpbGF0aW9uSGVpZ2h0ID09IGRpbGF0aW9uV2lkdGhgLiBJZiBpdCBpcyBncmVhdGVyIHRoYW5cbiAqICAgICAxLCB0aGVuIGFsbCB2YWx1ZXMgb2YgYHN0cmlkZXNgIG11c3QgYmUgMS5cbiAqIEBwYXJhbSBwYWQgVGhlIHR5cGUgb2YgcGFkZGluZyBhbGdvcml0aG0uXG4gKiAgICAtIGBzYW1lYCBhbmQgc3RyaWRlIDE6IG91dHB1dCB3aWxsIGJlIG9mIHNhbWUgc2l6ZSBhcyBpbnB1dCxcbiAqICAgICAgIHJlZ2FyZGxlc3Mgb2YgZmlsdGVyIHNpemUuXG4gKiAgICAtIGB2YWxpZGA6IG91dHB1dCB3aWxsIGJlIHNtYWxsZXIgdGhhbiBpbnB1dCBpZiBmaWx0ZXIgaXMgbGFyZ2VyXG4gKiAgICAgICB0aGFuIDF4MS5cbiAqICAgIC0gRm9yIG1vcmUgaW5mbywgc2VlIHRoaXMgZ3VpZGU6XG4gKiAgICAgW2h0dHBzOi8vd3d3LnRlbnNvcmZsb3cub3JnL2FwaV9kb2NzL3B5dGhvbi90Zi9ubi9jb252b2x1dGlvbl0oXG4gKiAgICAgICAgICBodHRwczovL3d3dy50ZW5zb3JmbG93Lm9yZy9hcGlfZG9jcy9weXRob24vdGYvbm4vY29udm9sdXRpb24pXG4gKiBAcGFyYW0gZGltUm91bmRpbmdNb2RlIEEgc3RyaW5nIGZyb206ICdjZWlsJywgJ3JvdW5kJywgJ2Zsb29yJy4gSWYgbm9uZSBpc1xuICogICAgIHByb3ZpZGVkLCBpdCB3aWxsIGRlZmF1bHQgdG8gdHJ1bmNhdGUuXG4gKi9cbmZ1bmN0aW9uIG1heFBvb2xfPFQgZXh0ZW5kcyBUZW5zb3IzRHxUZW5zb3I0RD4oXG4gICAgeDogVHxUZW5zb3JMaWtlLCBmaWx0ZXJTaXplOiBbbnVtYmVyLCBudW1iZXJdfG51bWJlcixcbiAgICBzdHJpZGVzOiBbbnVtYmVyLCBudW1iZXJdfG51bWJlcixcbiAgICBwYWQ6ICd2YWxpZCd8J3NhbWUnfG51bWJlcnxjb252X3V0aWwuRXhwbGljaXRQYWRkaW5nLFxuICAgIGRpbVJvdW5kaW5nTW9kZT86ICdmbG9vcid8J3JvdW5kJ3wnY2VpbCcpOiBUIHtcbiAgY29uc3QgJHggPSBjb252ZXJ0VG9UZW5zb3IoeCwgJ3gnLCAnbWF4UG9vbCcpO1xuICBjb25zdCBkaWxhdGlvbnMgPSAxO1xuXG4gIGxldCB4NEQgPSAkeCBhcyBUZW5zb3I0RDtcbiAgbGV0IHJlc2hhcGVkVG80RCA9IGZhbHNlO1xuICBpZiAoJHgucmFuayA9PT0gMykge1xuICAgIHJlc2hhcGVkVG80RCA9IHRydWU7XG4gICAgeDREID0gcmVzaGFwZSgkeCwgWzEsICR4LnNoYXBlWzBdLCAkeC5zaGFwZVsxXSwgJHguc2hhcGVbMl1dKTtcbiAgfVxuXG4gIHV0aWwuYXNzZXJ0KFxuICAgICAgeDRELnJhbmsgPT09IDQsXG4gICAgICAoKSA9PiBgRXJyb3IgaW4gbWF4UG9vbDogaW5wdXQgbXVzdCBiZSByYW5rIDQgYnV0IGdvdCByYW5rICR7eDRELnJhbmt9LmApO1xuICB1dGlsLmFzc2VydChcbiAgICAgIGNvbnZfdXRpbC5laXRoZXJTdHJpZGVzT3JEaWxhdGlvbnNBcmVPbmUoc3RyaWRlcywgZGlsYXRpb25zKSxcbiAgICAgICgpID0+ICdFcnJvciBpbiBtYXhQb29sOiBFaXRoZXIgc3RyaWRlcyBvciBkaWxhdGlvbnMgbXVzdCBiZSAxLiAnICtcbiAgICAgICAgICBgR290IHN0cmlkZXMgJHtzdHJpZGVzfSBhbmQgZGlsYXRpb25zICcke2RpbGF0aW9uc30nYCk7XG4gIGNvbnZfdXRpbC5jaGVja1BhZE9uRGltUm91bmRpbmdNb2RlKCdtYXhQb29sJywgcGFkLCBkaW1Sb3VuZGluZ01vZGUpO1xuICBjb25zdCBpbnB1dHM6IE1heFBvb2xJbnB1dHMgPSB7eDogeDREfTtcbiAgY29uc3QgYXR0cnM6IE1heFBvb2xBdHRycyA9IHtmaWx0ZXJTaXplLCBzdHJpZGVzLCBwYWQsIGRpbVJvdW5kaW5nTW9kZX07XG5cbiAgLy8gdHNsaW50OmRpc2FibGUtbmV4dC1saW5lOiBuby11bm5lY2Vzc2FyeS10eXBlLWFzc2VydGlvblxuICBjb25zdCByZXMgPSBFTkdJTkUucnVuS2VybmVsKFxuICAgICAgICAgICAgICAgICAgTWF4UG9vbCwgaW5wdXRzIGFzIHVua25vd24gYXMgTmFtZWRUZW5zb3JNYXAsXG4gICAgICAgICAgICAgICAgICBhdHRycyBhcyB1bmtub3duIGFzIE5hbWVkQXR0ck1hcCkgYXMgVDtcblxuICBpZiAocmVzaGFwZWRUbzREKSB7XG4gICAgcmV0dXJuIHJlc2hhcGUocmVzLCBbcmVzLnNoYXBlWzFdLCByZXMuc2hhcGVbMl0sIHJlcy5zaGFwZVszXV0pIGFzIFQ7XG4gIH1cbiAgcmV0dXJuIHJlcztcbn1cblxuZXhwb3J0IGNvbnN0IG1heFBvb2wgPSAvKiBAX19QVVJFX18gKi8gb3Aoe21heFBvb2xffSk7XG4iXX0=