/** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ import { ENGINE } from '../engine'; import { Mod } from '../kernel_names'; import { makeTypesMatch } from '../tensor_util'; import { convertToTensor } from '../tensor_util_env'; import { op } from './operation'; /** * Returns the mod of a and b element-wise. * `floor(x / y) * y + mod(x, y) = x` * Supports broadcasting. * * We also expose `tf.modStrict` which has the same signature as this op and * asserts that `a` and `b` are the same shape (does not broadcast). * * ```js * const a = tf.tensor1d([1, 4, 3, 16]); * const b = tf.tensor1d([1, 2, 9, 4]); * * a.mod(b).print(); // or tf.mod(a, b) * ``` * * ```js * // Broadcast a mod b. * const a = tf.tensor1d([2, 4, 6, 8]); * const b = tf.scalar(5); * * a.mod(b).print(); // or tf.mod(a, b) * ``` * * @param a The first tensor. * @param b The second tensor. Must have the same type as `a`. * * @doc {heading: 'Operations', subheading: 'Arithmetic'} */ function mod_(a, b) { let $a = convertToTensor(a, 'a', 'mod'); let $b = convertToTensor(b, 'b', 'mod'); [$a, $b] = makeTypesMatch($a, $b); const inputs = { a: $a, b: $b }; return ENGINE.runKernel(Mod, inputs); } export const mod = /* @__PURE__ */ op({ mod_ }); //# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoibW9kLmpzIiwic291cmNlUm9vdCI6IiIsInNvdXJjZXMiOlsiLi4vLi4vLi4vLi4vLi4vLi4vdGZqcy1jb3JlL3NyYy9vcHMvbW9kLnRzIl0sIm5hbWVzIjpbXSwibWFwcGluZ3MiOiJBQUFBOzs7Ozs7Ozs7Ozs7Ozs7R0FlRztBQUVILE9BQU8sRUFBQyxNQUFNLEVBQUMsTUFBTSxXQUFXLENBQUM7QUFDakMsT0FBTyxFQUFDLEdBQUcsRUFBWSxNQUFNLGlCQUFpQixDQUFDO0FBRy9DLE9BQU8sRUFBQyxjQUFjLEVBQUMsTUFBTSxnQkFBZ0IsQ0FBQztBQUM5QyxPQUFPLEVBQUMsZUFBZSxFQUFDLE1BQU0sb0JBQW9CLENBQUM7QUFHbkQsT0FBTyxFQUFDLEVBQUUsRUFBQyxNQUFNLGFBQWEsQ0FBQztBQUUvQjs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7O0dBMkJHO0FBQ0gsU0FBUyxJQUFJLENBQW1CLENBQW9CLEVBQUUsQ0FBb0I7SUFDeEUsSUFBSSxFQUFFLEdBQUcsZUFBZSxDQUFDLENBQUMsRUFBRSxHQUFHLEVBQUUsS0FBSyxDQUFDLENBQUM7SUFDeEMsSUFBSSxFQUFFLEdBQUcsZUFBZSxDQUFDLENBQUMsRUFBRSxHQUFHLEVBQUUsS0FBSyxDQUFDLENBQUM7SUFDeEMsQ0FBQyxFQUFFLEVBQUUsRUFBRSxDQUFDLEdBQUcsY0FBYyxDQUFDLEVBQUUsRUFBRSxFQUFFLENBQUMsQ0FBQztJQUVsQyxNQUFNLE1BQU0sR0FBYyxFQUFDLENBQUMsRUFBRSxFQUFFLEVBQUUsQ0FBQyxFQUFFLEVBQUUsRUFBQyxDQUFDO0lBRXpDLE9BQU8sTUFBTSxDQUFDLFNBQVMsQ0FBQyxHQUFHLEVBQUUsTUFBbUMsQ0FBQyxDQUFDO0FBQ3BFLENBQUM7QUFFRCxNQUFNLENBQUMsTUFBTSxHQUFHLEdBQUcsZUFBZSxDQUFDLEVBQUUsQ0FBQyxFQUFDLElBQUksRUFBQyxDQUFDLENBQUMiLCJzb3VyY2VzQ29udGVudCI6WyIvKipcbiAqIEBsaWNlbnNlXG4gKiBDb3B5cmlnaHQgMjAyMCBHb29nbGUgTExDLiBBbGwgUmlnaHRzIFJlc2VydmVkLlxuICogTGljZW5zZWQgdW5kZXIgdGhlIEFwYWNoZSBMaWNlbnNlLCBWZXJzaW9uIDIuMCAodGhlIFwiTGljZW5zZVwiKTtcbiAqIHlvdSBtYXkgbm90IHVzZSB0aGlzIGZpbGUgZXhjZXB0IGluIGNvbXBsaWFuY2Ugd2l0aCB0aGUgTGljZW5zZS5cbiAqIFlvdSBtYXkgb2J0YWluIGEgY29weSBvZiB0aGUgTGljZW5zZSBhdFxuICpcbiAqIGh0dHA6Ly93d3cuYXBhY2hlLm9yZy9saWNlbnNlcy9MSUNFTlNFLTIuMFxuICpcbiAqIFVubGVzcyByZXF1aXJlZCBieSBhcHBsaWNhYmxlIGxhdyBvciBhZ3JlZWQgdG8gaW4gd3JpdGluZywgc29mdHdhcmVcbiAqIGRpc3RyaWJ1dGVkIHVuZGVyIHRoZSBMaWNlbnNlIGlzIGRpc3RyaWJ1dGVkIG9uIGFuIFwiQVMgSVNcIiBCQVNJUyxcbiAqIFdJVEhPVVQgV0FSUkFOVElFUyBPUiBDT05ESVRJT05TIE9GIEFOWSBLSU5ELCBlaXRoZXIgZXhwcmVzcyBvciBpbXBsaWVkLlxuICogU2VlIHRoZSBMaWNlbnNlIGZvciB0aGUgc3BlY2lmaWMgbGFuZ3VhZ2UgZ292ZXJuaW5nIHBlcm1pc3Npb25zIGFuZFxuICogbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuXG4gKiA9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PVxuICovXG5cbmltcG9ydCB7RU5HSU5FfSBmcm9tICcuLi9lbmdpbmUnO1xuaW1wb3J0IHtNb2QsIE1vZElucHV0c30gZnJvbSAnLi4va2VybmVsX25hbWVzJztcbmltcG9ydCB7VGVuc29yfSBmcm9tICcuLi90ZW5zb3InO1xuaW1wb3J0IHtOYW1lZFRlbnNvck1hcH0gZnJvbSAnLi4vdGVuc29yX3R5cGVzJztcbmltcG9ydCB7bWFrZVR5cGVzTWF0Y2h9IGZyb20gJy4uL3RlbnNvcl91dGlsJztcbmltcG9ydCB7Y29udmVydFRvVGVuc29yfSBmcm9tICcuLi90ZW5zb3JfdXRpbF9lbnYnO1xuaW1wb3J0IHtUZW5zb3JMaWtlfSBmcm9tICcuLi90eXBlcyc7XG5cbmltcG9ydCB7b3B9IGZyb20gJy4vb3BlcmF0aW9uJztcblxuLyoqXG4gKiBSZXR1cm5zIHRoZSBtb2Qgb2YgYSBhbmQgYiBlbGVtZW50LXdpc2UuXG4gKiBgZmxvb3IoeCAvIHkpICogeSArIG1vZCh4LCB5KSA9IHhgXG4gKiBTdXBwb3J0cyBicm9hZGNhc3RpbmcuXG4gKlxuICogV2UgYWxzbyBleHBvc2UgYHRmLm1vZFN0cmljdGAgd2hpY2ggaGFzIHRoZSBzYW1lIHNpZ25hdHVyZSBhcyB0aGlzIG9wIGFuZFxuICogYXNzZXJ0cyB0aGF0IGBhYCBhbmQgYGJgIGFyZSB0aGUgc2FtZSBzaGFwZSAoZG9lcyBub3QgYnJvYWRjYXN0KS5cbiAqXG4gKiBgYGBqc1xuICogY29uc3QgYSA9IHRmLnRlbnNvcjFkKFsxLCA0LCAzLCAxNl0pO1xuICogY29uc3QgYiA9IHRmLnRlbnNvcjFkKFsxLCAyLCA5LCA0XSk7XG4gKlxuICogYS5tb2QoYikucHJpbnQoKTsgIC8vIG9yIHRmLm1vZChhLCBiKVxuICogYGBgXG4gKlxuICogYGBganNcbiAqIC8vIEJyb2FkY2FzdCBhIG1vZCBiLlxuICogY29uc3QgYSA9IHRmLnRlbnNvcjFkKFsyLCA0LCA2LCA4XSk7XG4gKiBjb25zdCBiID0gdGYuc2NhbGFyKDUpO1xuICpcbiAqIGEubW9kKGIpLnByaW50KCk7ICAvLyBvciB0Zi5tb2QoYSwgYilcbiAqIGBgYFxuICpcbiAqIEBwYXJhbSBhIFRoZSBmaXJzdCB0ZW5zb3IuXG4gKiBAcGFyYW0gYiBUaGUgc2Vjb25kIHRlbnNvci4gTXVzdCBoYXZlIHRoZSBzYW1lIHR5cGUgYXMgYGFgLlxuICpcbiAqIEBkb2Mge2hlYWRpbmc6ICdPcGVyYXRpb25zJywgc3ViaGVhZGluZzogJ0FyaXRobWV0aWMnfVxuICovXG5mdW5jdGlvbiBtb2RfPFQgZXh0ZW5kcyBUZW5zb3I+KGE6IFRlbnNvcnxUZW5zb3JMaWtlLCBiOiBUZW5zb3J8VGVuc29yTGlrZSk6IFQge1xuICBsZXQgJGEgPSBjb252ZXJ0VG9UZW5zb3IoYSwgJ2EnLCAnbW9kJyk7XG4gIGxldCAkYiA9IGNvbnZlcnRUb1RlbnNvcihiLCAnYicsICdtb2QnKTtcbiAgWyRhLCAkYl0gPSBtYWtlVHlwZXNNYXRjaCgkYSwgJGIpO1xuXG4gIGNvbnN0IGlucHV0czogTW9kSW5wdXRzID0ge2E6ICRhLCBiOiAkYn07XG5cbiAgcmV0dXJuIEVOR0lORS5ydW5LZXJuZWwoTW9kLCBpbnB1dHMgYXMgdW5rbm93biBhcyBOYW1lZFRlbnNvck1hcCk7XG59XG5cbmV4cG9ydCBjb25zdCBtb2QgPSAvKiBAX19QVVJFX18gKi8gb3Aoe21vZF99KTtcbiJdfQ==