"use strict"; /** * @license * Copyright 2019 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var _this = this; Object.defineProperty(exports, "__esModule", { value: true }); var engine_1 = require("./engine"); var tf = require("./index"); var jasmine_util_1 = require("./jasmine_util"); var test_util_1 = require("./test_util"); jasmine_util_1.describeWithFlags('gradients', jasmine_util_1.ALL_ENVS, function () { it('matmul + relu', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, _a, da, db, dedm, transposeA, transposeB, _b, _c, _d, _e; return __generator(this, function (_f) { switch (_f.label) { case 0: a = tf.tensor2d([-1, 2, -3, 10, -20, 30], [2, 3]); b = tf.tensor2d([2, -3, 4, -1, 2, -3], [3, 2]); _a = tf.grads(function (a, b) { // m = dot(a, b) // y = relu(m) // e = sum(y) var m = tf.matMul(a, b); var y = tf.relu(m); return tf.sum(y); })([a, b]), da = _a[0], db = _a[1]; dedm = tf.step(tf.matMul(a, b)); // de/da = dot(de/dy, bT) expect(da.shape).toEqual(a.shape); transposeA = false; transposeB = true; _b = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _c = [_f.sent()]; return [4 /*yield*/, tf.matMul(dedm, b, transposeA, transposeB).data()]; case 2: _b.apply(void 0, _c.concat([_f.sent()])); // de/db = dot(aT, de/dy) expect(db.shape).toEqual(b.shape); transposeA = true; transposeB = false; _d = test_util_1.expectArraysClose; return [4 /*yield*/, db.data()]; case 3: _e = [_f.sent()]; return [4 /*yield*/, tf.matMul(a, dedm, transposeA, transposeB).data()]; case 4: _d.apply(void 0, _e.concat([_f.sent()])); return [2 /*return*/]; } }); }); }); it('grad(f)', function () { return __awaiter(_this, void 0, void 0, function () { var grad, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: grad = tf.grad(function (x) { return x.square(); }); result = grad(tf.tensor1d([.1, .2])); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [.2, .4]]); return [2 /*return*/]; } }); }); }); it('calling grad(f) twice works', function () { return __awaiter(_this, void 0, void 0, function () { var grad, result, result2, _a, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: grad = tf.grad(function (x) { return x.square(); }); result = grad(tf.tensor1d([.1, .2])); result2 = grad(tf.tensor1d([.1, .4])); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_c.sent(), [.2, .4]]); _b = test_util_1.expectArraysClose; return [4 /*yield*/, result2.data()]; case 2: _b.apply(void 0, [_c.sent(), [.2, .8]]); return [2 /*return*/]; } }); }); }); it('grad(f): throwing an error during forward pass', function () { var grad = tf.grad(function (x) { throw new Error('failed forward pass'); }); expect(function () { return grad(tf.zeros([])); }).toThrowError(); expect(engine_1.ENGINE.isTapeOn()).toBe(false); }); it('grad(f): throwing an error during backwards pass', function () { var customOp = tf.customGrad(function (x) { return { value: x, gradFunc: function () { throw new Error('failed backward pass'); } }; }); var grad = tf.grad(function (x) { return customOp(x); }); expect(function () { return grad(tf.zeros([])); }).toThrowError(); expect(engine_1.ENGINE.isTapeOn()).toBe(false); }); it('grads(f)', function () { return __awaiter(_this, void 0, void 0, function () { var grads, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: grads = tf.grads(function (x) { return x.square(); }); result = grads([tf.tensor1d([.1, .2])]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result[0].data()]; case 1: _a.apply(void 0, [_b.sent(), [.2, .4]]); return [2 /*return*/]; } }); }); }); it('calling grads(f) twice works', function () { return __awaiter(_this, void 0, void 0, function () { var grads, result, result2, _a, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: grads = tf.grads(function (x) { return x.square(); }); result = grads([tf.tensor1d([.1, .2])]); result2 = grads([tf.tensor1d([.1, .4])]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result[0].data()]; case 1: _a.apply(void 0, [_c.sent(), [.2, .4]]); _b = test_util_1.expectArraysClose; return [4 /*yield*/, result2[0].data()]; case 2: _b.apply(void 0, [_c.sent(), [.2, .8]]); return [2 /*return*/]; } }); }); }); it('works with reshape', function () { return __awaiter(_this, void 0, void 0, function () { var a, exponent, da, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 4], [2, 2]); exponent = tf.tensor1d([2, 2, 2, 2], 'int32'); da = tf.grad(function (a) { var b = a.flatten(); var m = tf.pow(b, exponent); return tf.sum(m); })(a); expect(da.shape).toEqual([2, 2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _a.apply(void 0, [_b.sent(), [2, 4, 6, 8]]); return [2 /*return*/]; } }); }); }); it('reshape outside tf.grads() throws error', function () { var a = tf.tensor2d([1, 2, 3, 4], [2, 2]); var b = a.flatten(); var exponent = tf.tensor1d([2, 2, 2, 2], 'int32'); var f = function () { tf.grads(function (a, b) { var m = tf.pow(b, exponent); return tf.sum(m); })([a, b]); }; expect(f).toThrowError(); }); it('does not error if irrelevant (pruned) ops are missing grads', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, da, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([true, true], 'bool'); b = tf.tensor1d([false, true], 'bool'); da = tf.grad(function (a) { // Logical has no gradients, but it is irrelevant. a.logicalAnd(b); return a.sum(); })(a); _a = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 1]]); return [2 /*return*/]; } }); }); }); it('errors if relevant ops are missing grads', function () { var a = tf.tensor1d([true, true], 'bool'); var b = tf.tensor1d([false, true], 'bool'); var dfda = tf.grad(function (a) { // Logical has no gradients, but it's relevant to the output. return a.logicalAnd(b); }); expect(function () { return dfda(a); }).toThrowError(); }); it('works with asType', function () { return __awaiter(_this, void 0, void 0, function () { var a, exponent, da, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1, 2, 3, 4], [2, 2], 'int32'); exponent = tf.tensor2d([2, 2, 2, 2], [2, 2], 'int32'); da = tf.grad(function (a) { var b = a.toFloat(); var m = tf.pow(b, exponent); return tf.sum(m); })(a); expect(da.shape).toEqual([2, 2]); expect(da.dtype).toEqual('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _a.apply(void 0, [_b.sent(), [2, 4, 6, 8]]); return [2 /*return*/]; } }); }); }); it('asType outside of tf.grads() throws error', function () { var a = tf.tensor2d([1, 2, 3, 4], [2, 2], 'int32'); var b = a.toFloat(); var exponent = tf.tensor2d([2, 2, 2, 2], [2, 2], 'int32'); var f = function () { tf.grad(function (a) { var m = tf.pow(b, exponent); return tf.sum(m); })(a); }; expect(f).toThrowError(); }); it('saves tensors from the forward pass as expected', function () { var x = tf.scalar(1).variable(); var optimizer = tf.train.sgd(0.1); optimizer.minimize(function () { var y = x.square(); var z = y.square(); y.dispose(); return z; }); }); it('custom ops do not leak', function () { var before = tf.memory().numTensors; var x = tf.softmax([1, 2, 3, 4]); x.dispose(); var now = tf.memory().numTensors; expect(now).toBe(before); }); }); jasmine_util_1.describeWithFlags('valueAndGradients', jasmine_util_1.ALL_ENVS, function () { it('matmul + relu', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, _a, value, grads, _b, dedm, da, db, transposeA, transposeB, _c, _d, _e, _f; return __generator(this, function (_g) { switch (_g.label) { case 0: a = tf.tensor2d([-1, 2, -3, 10, -20, 30], [2, 3]); b = tf.tensor2d([2, -3, 4, -1, 2, -3], [3, 2]); _a = tf.valueAndGrads(function (a, b) { // m = dot(a, b) // y = relu(m) // e = sum(y) var m = tf.matMul(a, b); var y = tf.relu(m); return tf.sum(y); })([a, b]), value = _a.value, grads = _a.grads; _b = test_util_1.expectArraysClose; return [4 /*yield*/, value.data()]; case 1: _b.apply(void 0, [_g.sent(), 10]); dedm = tf.step(tf.matMul(a, b)); da = grads[0], db = grads[1]; transposeA = false; transposeB = true; _c = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 2: _d = [_g.sent()]; return [4 /*yield*/, tf.matMul(dedm, b, transposeA, transposeB).data()]; case 3: _c.apply(void 0, _d.concat([_g.sent()])); // de/db = dot(aT, de/dy) transposeA = true; transposeB = false; _e = test_util_1.expectArraysClose; return [4 /*yield*/, db.data()]; case 4: _f = [_g.sent()]; return [4 /*yield*/, tf.matMul(a, dedm, transposeA, transposeB).data()]; case 5: _e.apply(void 0, _f.concat([_g.sent()])); return [2 /*return*/]; } }); }); }); it('matmul + relu + inner tidy', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, _a, value, grads, _b, dedm, da, db, transposeA, transposeB, _c, _d, _e, _f; return __generator(this, function (_g) { switch (_g.label) { case 0: a = tf.tensor2d([-1, 2, -3, 10, -20, 30], [2, 3]); b = tf.tensor2d([2, -3, 4, -1, 2, -3], [3, 2]); _a = tf.valueAndGrads(function (a, b) { // m = dot(a, b) // y = relu(m) // e = sum(y) var m = tf.matMul(a, b); return tf.tidy(function () { var y = tf.relu(m); return tf.sum(y); }); })([a, b]), value = _a.value, grads = _a.grads; _b = test_util_1.expectArraysClose; return [4 /*yield*/, value.data()]; case 1: _b.apply(void 0, [_g.sent(), 10]); dedm = tf.step(tf.matMul(a, b)); da = grads[0], db = grads[1]; transposeA = false; transposeB = true; _c = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 2: _d = [_g.sent()]; return [4 /*yield*/, tf.matMul(dedm, b, transposeA, transposeB).data()]; case 3: _c.apply(void 0, _d.concat([_g.sent()])); // de/db = dot(aT, de/dy) transposeA = true; transposeB = false; _e = test_util_1.expectArraysClose; return [4 /*yield*/, db.data()]; case 4: _f = [_g.sent()]; return [4 /*yield*/, tf.matMul(a, dedm, transposeA, transposeB).data()]; case 5: _e.apply(void 0, _f.concat([_g.sent()])); return [2 /*return*/]; } }); }); }); }); jasmine_util_1.describeWithFlags('higher-order gradients', jasmine_util_1.ALL_ENVS, function () { it('grad(grad(f))', function () { return __awaiter(_this, void 0, void 0, function () { var x, before, gradgrad, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.tensor1d([.1, .2]); before = tf.memory().numTensors; gradgrad = tf.grad(tf.grad(function (x) { return x.mul(x).mul(x); })); result = gradgrad(x); expect(tf.memory().numTensors).toBe(before + 1); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [.6, 1.2]]); return [2 /*return*/]; } }); }); }); it('grad(grad(x^2))', function () { return __awaiter(_this, void 0, void 0, function () { var x, gradgrad, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.scalar(3); gradgrad = tf.grad(tf.grad(function (x) { return x.square(); })); result = gradgrad(x); // grad(grad(x^2)) = grad(2x) = 2 _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: // grad(grad(x^2)) = grad(2x) = 2 _a.apply(void 0, [_b.sent(), [2]]); return [2 /*return*/]; } }); }); }); it('grads(grads(f))', function () { return __awaiter(_this, void 0, void 0, function () { var grads, gradsgrads, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: grads = tf.grads(function (x) { return x.mul(x).mul(x); }); gradsgrads = tf.grads(function (x) { return grads([x])[0]; }); result = gradsgrads([tf.tensor1d([.1, .2])]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result[0].data()]; case 1: _a.apply(void 0, [_b.sent(), [.6, 1.2]]); return [2 /*return*/]; } }); }); }); }); jasmine_util_1.describeWithFlags('customGradient', jasmine_util_1.ALL_ENVS, function () { it('basic', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, dy, customPow, _a, value, grad, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.scalar(3); b = tf.scalar(2, 'int32'); dy = tf.scalar(4); customPow = tf.customGrad(function (a) { var value = tf.pow(a, b); var gradFunc = function (dy) { return dy.mul(tf.scalar(0.1)); }; return { value: value, gradFunc: gradFunc }; }); _a = tf.valueAndGrad(function (a) { return customPow(a); })(a, dy), value = _a.value, grad = _a.grad; expect(value.shape).toEqual(a.shape); _b = test_util_1.expectArraysClose; return [4 /*yield*/, value.data()]; case 1: _b.apply(void 0, [_d.sent(), [9]]); expect(grad.shape).toEqual(a.shape); _c = test_util_1.expectArraysClose; return [4 /*yield*/, grad.data()]; case 2: _c.apply(void 0, [_d.sent(), [.4]]); return [2 /*return*/]; } }); }); }); it('second order derivative through customGradient', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, dy, customPow, dda, _a, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: a = tf.scalar(3); b = tf.scalar(2, 'int32'); dy = tf.scalar(5); customPow = tf.customGrad(function (a, save) { var value = tf.pow(a, b); save([a]); var gradFunc = function (dy, saved) { var a = saved[0]; return dy.mul(a); }; return { value: value, gradFunc: gradFunc }; }); dda = tf.grad(tf.grad(function (a) { return customPow(a); }))(a, dy); expect(dda.shape).toEqual(a.shape); // First order: dy * a. Second order: dy. _a = test_util_1.expectArraysClose; return [4 /*yield*/, dda.data()]; case 1: _b = [_c.sent()]; return [4 /*yield*/, dy.data()]; case 2: // First order: dy * a. Second order: dy. _a.apply(void 0, _b.concat([_c.sent()])); return [2 /*return*/]; } }); }); }); it('calling gradient of custom op twice works', function () { return __awaiter(_this, void 0, void 0, function () { var customOp, x, grad, _a, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: customOp = tf.customGrad(function (x, save) { // Override gradient of our custom x ^ 2 op to be dy * abs(x); save([x]); return { value: x.square(), gradFunc: function (dy, saved) { var x = saved[0]; return dy.mul(x.abs()); } }; }); x = tf.tensor1d([-1, -2, 3]); grad = tf.grad(function (x) { return customOp(x); }); _a = test_util_1.expectArraysClose; return [4 /*yield*/, grad(x).data()]; case 1: _a.apply(void 0, [_c.sent(), [1, 2, 3]]); _b = test_util_1.expectArraysClose; return [4 /*yield*/, grad(x).data()]; case 2: _b.apply(void 0, [_c.sent(), [1, 2, 3]]); return [2 /*return*/]; } }); }); }); }); //# sourceMappingURL=gradients_test.js.map