"use strict"; /** * @license * Copyright 2017 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var _this = this; Object.defineProperty(exports, "__esModule", { value: true }); var tf = require("../index"); var jasmine_util_1 = require("../jasmine_util"); var test_util_1 = require("../test_util"); jasmine_util_1.describeWithFlags('batchNorm4D', jasmine_util_1.ALL_ENVS, function () { it('simple batchnorm4D, no offset or scale, 2x1x1x2', function () { return __awaiter(_this, void 0, void 0, function () { var xT, meanT, varianceT, varianceEpsilon, result, x, mean, variance, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: xT = tf.tensor4d([2, 4, 9, 23], [2, 1, 1, 2]); meanT = tf.tensor1d([1, 2]); varianceT = tf.tensor1d([2, 3]); varianceEpsilon = .001; result = tf.batchNorm4d(xT, meanT, varianceT, undefined, undefined, varianceEpsilon); return [4 /*yield*/, xT.array()]; case 1: x = _b.sent(); return [4 /*yield*/, meanT.array()]; case 2: mean = _b.sent(); return [4 /*yield*/, varianceT.array()]; case 3: variance = _b.sent(); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 4: _a.apply(void 0, [_b.sent(), [ (x[0][0][0][0] - mean[0]) * 1 / Math.sqrt(variance[0] + varianceEpsilon), (x[0][0][0][1] - mean[1]) * 1 / Math.sqrt(variance[1] + varianceEpsilon), (x[1][0][0][0] - mean[0]) * 1 / Math.sqrt(variance[0] + varianceEpsilon), (x[1][0][0][1] - mean[1]) * 1 / Math.sqrt(variance[1] + varianceEpsilon) ]]); return [2 /*return*/]; } }); }); }); it('simple batchnorm4D, no offset, 2x1x1x2', function () { return __awaiter(_this, void 0, void 0, function () { var xT, meanT, varianceT, scaleT, varianceEpsilon, result, x, mean, variance, scale, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: xT = tf.tensor4d([2, 4, 9, 23], [2, 1, 1, 2]); meanT = tf.tensor1d([1, 2]); varianceT = tf.tensor1d([2, 3]); scaleT = tf.tensor1d([4, 5]); varianceEpsilon = .001; result = tf.batchNorm4d(xT, meanT, varianceT, undefined, scaleT, varianceEpsilon); return [4 /*yield*/, xT.buffer()]; case 1: x = _b.sent(); return [4 /*yield*/, meanT.buffer()]; case 2: mean = _b.sent(); return [4 /*yield*/, varianceT.buffer()]; case 3: variance = _b.sent(); return [4 /*yield*/, scaleT.buffer()]; case 4: scale = _b.sent(); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 5: _a.apply(void 0, [_b.sent(), [ (x.get(0, 0, 0, 0) - mean.get(0)) * scale.get(0) / Math.sqrt(variance.get(0) + varianceEpsilon), (x.get(0, 0, 0, 1) - mean.get(1)) * scale.get(1) / Math.sqrt(variance.get(1) + varianceEpsilon), (x.get(1, 0, 0, 0) - mean.get(0)) * scale.get(0) / Math.sqrt(variance.get(0) + varianceEpsilon), (x.get(1, 0, 0, 1) - mean.get(1)) * scale.get(1) / Math.sqrt(variance.get(1) + varianceEpsilon) ]]); return [2 /*return*/]; } }); }); }); it('simple batchnorm4D, no scale, 2x1x1x2', function () { return __awaiter(_this, void 0, void 0, function () { var xT, meanT, varianceT, offsetT, varianceEpsilon, result, x, mean, variance, offset, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: xT = tf.tensor4d([2, 4, 9, 23], [2, 1, 1, 2]); meanT = tf.tensor1d([1, 2]); varianceT = tf.tensor1d([2, 3]); offsetT = tf.tensor1d([4, 5]); varianceEpsilon = .001; result = tf.batchNorm4d(xT, meanT, varianceT, offsetT, undefined, varianceEpsilon); return [4 /*yield*/, xT.buffer()]; case 1: x = _b.sent(); return [4 /*yield*/, meanT.buffer()]; case 2: mean = _b.sent(); return [4 /*yield*/, varianceT.buffer()]; case 3: variance = _b.sent(); return [4 /*yield*/, offsetT.buffer()]; case 4: offset = _b.sent(); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 5: _a.apply(void 0, [_b.sent(), [ offset.get(0) + (x.get(0, 0, 0, 0) - mean.get(0)) * 1 / Math.sqrt(variance.get(0) + varianceEpsilon), offset.get(1) + (x.get(0, 0, 0, 1) - mean.get(1)) * 1 / Math.sqrt(variance.get(1) + varianceEpsilon), offset.get(0) + (x.get(1, 0, 0, 0) - mean.get(0)) * 1 / Math.sqrt(variance.get(0) + varianceEpsilon), offset.get(1) + (x.get(1, 0, 0, 1) - mean.get(1)) * 1 / Math.sqrt(variance.get(1) + varianceEpsilon) ]]); return [2 /*return*/]; } }); }); }); it('simple batchnorm4D, 2x1x1x2', function () { return __awaiter(_this, void 0, void 0, function () { var xT, meanT, varianceT, offsetT, scaleT, varianceEpsilon, result, x, mean, variance, scale, offset, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: xT = tf.tensor4d([2, 4, 9, 23], [2, 1, 1, 2]); meanT = tf.tensor1d([1, 2]); varianceT = tf.tensor1d([2, 3]); offsetT = tf.tensor1d([3, 4]); scaleT = tf.tensor1d([4, 5]); varianceEpsilon = .001; result = tf.batchNorm4d(xT, meanT, varianceT, offsetT, scaleT, varianceEpsilon); return [4 /*yield*/, xT.buffer()]; case 1: x = _b.sent(); return [4 /*yield*/, meanT.buffer()]; case 2: mean = _b.sent(); return [4 /*yield*/, varianceT.buffer()]; case 3: variance = _b.sent(); return [4 /*yield*/, scaleT.buffer()]; case 4: scale = _b.sent(); return [4 /*yield*/, offsetT.buffer()]; case 5: offset = _b.sent(); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 6: _a.apply(void 0, [_b.sent(), [ offset.get(0) + (x.get(0, 0, 0, 0) - mean.get(0)) * scale.get(0) / Math.sqrt(variance.get(0) + varianceEpsilon), offset.get(1) + (x.get(0, 0, 0, 1) - mean.get(1)) * scale.get(1) / Math.sqrt(variance.get(1) + varianceEpsilon), offset.get(0) + (x.get(1, 0, 0, 0) - mean.get(0)) * scale.get(0) / Math.sqrt(variance.get(0) + varianceEpsilon), offset.get(1) + (x.get(1, 0, 0, 1) - mean.get(1)) * scale.get(1) / Math.sqrt(variance.get(1) + varianceEpsilon) ]]); return [2 /*return*/]; } }); }); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var x, mean, variance, offset, scale, varianceEpsilon, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = [[[[2, 4]]], [[[9, 23]]]]; mean = [1, 2]; variance = [2, 3]; offset = [3, 4]; scale = [4, 5]; varianceEpsilon = .001; result = tf.batchNorm4d(x, mean, variance, offset, scale, varianceEpsilon); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [ offset[0] + (x[0][0][0][0] - mean[0]) * scale[0] / Math.sqrt(variance[0] + varianceEpsilon), offset[1] + (x[0][0][0][1] - mean[1]) * scale[1] / Math.sqrt(variance[1] + varianceEpsilon), offset[0] + (x[1][0][0][0] - mean[0]) * scale[0] / Math.sqrt(variance[0] + varianceEpsilon), offset[1] + (x[1][0][0][1] - mean[1]) * scale[1] / Math.sqrt(variance[1] + varianceEpsilon) ]]); return [2 /*return*/]; } }); }); }); it('simple batchnorm4D gradients, 2x1x1x2', function () { return __awaiter(_this, void 0, void 0, function () { var x, mean, variance, offset, scale, varianceEpsilon, dy, gradX, _a, gradMean, _b, gradVariance, _c, gradOffset, _d, _e, gradScale, _f; return __generator(this, function (_g) { switch (_g.label) { case 0: x = tf.tensor4d([2, 4, 9, 23], [2, 1, 1, 2]); mean = tf.tensor1d([1, 2]); variance = tf.tensor1d([2, 3]); offset = tf.tensor1d([3, 4]); scale = tf.tensor1d([2, 5]); varianceEpsilon = .001; dy = tf.tensor4d([-1, -1, -1, -1], [2, 1, 1, 2]); gradX = tf.grad(function (x) { return tf.batchNorm4d(x, mean, variance, offset, scale, varianceEpsilon); })(x, dy); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradX.data()]; case 1: _a.apply(void 0, [_g.sent(), [-1.414, -2.887, -1.414, -2.887]]); expect(gradX.shape).toEqual([2, 1, 1, 2]); gradMean = tf.grad(function (mean) { return tf.batchNorm4d(x, mean, variance, offset, scale, varianceEpsilon); })(mean, dy); _b = test_util_1.expectArraysClose; return [4 /*yield*/, gradMean.data()]; case 2: _b.apply(void 0, [_g.sent(), [2.828, 5.773]]); expect(gradMean.shape).toEqual([2]); gradVariance = tf.grad(function (variance) { return tf.batchNorm4d(x, mean, variance, offset, scale, varianceEpsilon); })(variance, dy); _c = test_util_1.expectArraysClose; return [4 /*yield*/, gradVariance.data()]; case 3: _c.apply(void 0, [_g.sent(), [3.180, 11.060]]); expect(gradVariance.shape).toEqual([2]); gradOffset = tf.grad(function (offset) { return tf.batchNorm4d(x, mean, variance, offset, scale, varianceEpsilon); })(offset, dy); _d = test_util_1.expectArraysClose; return [4 /*yield*/, gradOffset.data()]; case 4: _e = [_g.sent()]; return [4 /*yield*/, dy.sum([0, 1, 2]).data()]; case 5: _d.apply(void 0, _e.concat([_g.sent()])); expect(gradOffset.shape).toEqual([2]); gradScale = tf.grad(function (scale) { return tf.batchNorm4d(x, mean, variance, offset, scale, varianceEpsilon); })(scale, dy); _f = test_util_1.expectArraysClose; return [4 /*yield*/, gradScale.data()]; case 6: _f.apply(void 0, [_g.sent(), [-6.362, -13.277]]); expect(gradScale.shape).toEqual([2]); return [2 /*return*/]; } }); }); }); it('batchnorm4D gradients, same shapes in x, mean and variance', function () { return __awaiter(_this, void 0, void 0, function () { var x, mean, variance, scale, offset, varianceEpsilon, dy, gradX, _a, gradMean, _b, gradVariance, _c, gradOffset, _d, _e, gradScale, _f; return __generator(this, function (_g) { switch (_g.label) { case 0: x = tf.tensor4d([10, 20, 30, 40], [2, 1, 1, 2]); mean = tf.tensor4d([0, 5, 10, 15], [2, 1, 1, 2]); variance = tf.tensor4d([2, 4, 6, 8], [2, 1, 1, 2]); scale = tf.tensor4d([2, 5, 2, 5], [2, 1, 1, 2]); offset = tf.tensor4d([0, 0, 0, 0], [2, 1, 1, 2]); varianceEpsilon = .001; dy = tf.tensor4d([-1, -1, -1, -1], [2, 1, 1, 2]); gradX = tf.grad(function (x) { return tf.batchNorm4d(x, mean, variance, offset, scale, varianceEpsilon); })(x, dy); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradX.data()]; case 1: _a.apply(void 0, [_g.sent(), [-1.414, -2.500, -0.816, -1.768]]); expect(gradX.shape).toEqual([2, 1, 1, 2]); gradMean = tf.grad(function (mean) { return tf.batchNorm4d(x, mean, variance, offset, scale, varianceEpsilon); })(mean, dy); _b = test_util_1.expectArraysClose; return [4 /*yield*/, gradMean.data()]; case 2: _b.apply(void 0, [_g.sent(), [1.414, 2.500, 0.816, 1.768]]); expect(gradMean.shape).toEqual([2, 1, 1, 2]); gradVariance = tf.grad(function (variance) { return tf.batchNorm4d(x, mean, variance, offset, scale, varianceEpsilon); })(variance, dy); _c = test_util_1.expectArraysClose; return [4 /*yield*/, gradVariance.data()]; case 3: _c.apply(void 0, [_g.sent(), [3.533, 4.686, 1.360, 2.762]]); expect(gradVariance.shape).toEqual([2, 1, 1, 2]); gradOffset = tf.grad(function (offset) { return tf.batchNorm4d(x, mean, variance, offset, scale, varianceEpsilon); })(offset, dy); _d = test_util_1.expectArraysClose; return [4 /*yield*/, gradOffset.data()]; case 4: _e = [_g.sent()]; return [4 /*yield*/, dy.data()]; case 5: _d.apply(void 0, _e.concat([_g.sent()])); expect(gradOffset.shape).toEqual([2, 1, 1, 2]); gradScale = tf.grad(function (scale) { return tf.batchNorm4d(x, mean, variance, offset, scale, varianceEpsilon); })(scale, dy); _f = test_util_1.expectArraysClose; return [4 /*yield*/, gradScale.data()]; case 6: _f.apply(void 0, [_g.sent(), [-7.069, -7.499, -8.164, -8.838]]); expect(gradScale.shape).toEqual([2, 1, 1, 2]); return [2 /*return*/]; } }); }); }); }); jasmine_util_1.describeWithFlags('batchNorm3D', jasmine_util_1.ALL_ENVS, function () { it('simple batchnorm3D, no offset or scale, 2x1x2', function () { return __awaiter(_this, void 0, void 0, function () { var xT, meanT, varianceT, varianceEpsilon, result, x, mean, variance, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: xT = tf.tensor3d([2, 4, 9, 23], [2, 1, 2]); meanT = tf.tensor1d([1, 2]); varianceT = tf.tensor1d([2, 3]); varianceEpsilon = .001; result = tf.batchNorm3d(xT, meanT, varianceT, undefined, undefined, varianceEpsilon); return [4 /*yield*/, xT.buffer()]; case 1: x = _b.sent(); return [4 /*yield*/, meanT.buffer()]; case 2: mean = _b.sent(); return [4 /*yield*/, varianceT.buffer()]; case 3: variance = _b.sent(); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 4: _a.apply(void 0, [_b.sent(), [ (x.get(0, 0, 0) - mean.get(0)) * 1 / Math.sqrt(variance.get(0) + varianceEpsilon), (x.get(0, 0, 1) - mean.get(1)) * 1 / Math.sqrt(variance.get(1) + varianceEpsilon), (x.get(1, 0, 0) - mean.get(0)) * 1 / Math.sqrt(variance.get(0) + varianceEpsilon), (x.get(1, 0, 1) - mean.get(1)) * 1 / Math.sqrt(variance.get(1) + varianceEpsilon) ]]); return [2 /*return*/]; } }); }); }); it('simple batchnorm3D, no offset, 2x1x2', function () { return __awaiter(_this, void 0, void 0, function () { var xT, meanT, varianceT, scaleT, varianceEpsilon, result, x, mean, variance, scale, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: xT = tf.tensor3d([2, 4, 9, 23], [2, 1, 2]); meanT = tf.tensor1d([1, 2]); varianceT = tf.tensor1d([2, 3]); scaleT = tf.tensor1d([4, 5]); varianceEpsilon = .001; result = tf.batchNorm3d(xT, meanT, varianceT, undefined, scaleT, varianceEpsilon); return [4 /*yield*/, xT.buffer()]; case 1: x = _b.sent(); return [4 /*yield*/, meanT.buffer()]; case 2: mean = _b.sent(); return [4 /*yield*/, varianceT.buffer()]; case 3: variance = _b.sent(); return [4 /*yield*/, scaleT.buffer()]; case 4: scale = _b.sent(); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 5: _a.apply(void 0, [_b.sent(), [ (x.get(0, 0, 0) - mean.get(0)) * scale.get(0) / Math.sqrt(variance.get(0) + varianceEpsilon), (x.get(0, 0, 1) - mean.get(1)) * scale.get(1) / Math.sqrt(variance.get(1) + varianceEpsilon), (x.get(1, 0, 0) - mean.get(0)) * scale.get(0) / Math.sqrt(variance.get(0) + varianceEpsilon), (x.get(1, 0, 1) - mean.get(1)) * scale.get(1) / Math.sqrt(variance.get(1) + varianceEpsilon) ]]); return [2 /*return*/]; } }); }); }); it('simple batchnorm3D, no scale, 2x1x2', function () { return __awaiter(_this, void 0, void 0, function () { var xT, meanT, varianceT, offsetT, varianceEpsilon, result, x, mean, variance, offset, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: xT = tf.tensor3d([2, 4, 9, 23], [2, 1, 2]); meanT = tf.tensor1d([1, 2]); varianceT = tf.tensor1d([2, 3]); offsetT = tf.tensor1d([4, 5]); varianceEpsilon = .001; result = tf.batchNorm3d(xT, meanT, varianceT, offsetT, undefined, varianceEpsilon); return [4 /*yield*/, xT.buffer()]; case 1: x = _b.sent(); return [4 /*yield*/, meanT.buffer()]; case 2: mean = _b.sent(); return [4 /*yield*/, varianceT.buffer()]; case 3: variance = _b.sent(); return [4 /*yield*/, offsetT.buffer()]; case 4: offset = _b.sent(); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 5: _a.apply(void 0, [_b.sent(), [ offset.get(0) + (x.get(0, 0, 0) - mean.get(0)) * 1 / Math.sqrt(variance.get(0) + varianceEpsilon), offset.get(1) + (x.get(0, 0, 1) - mean.get(1)) * 1 / Math.sqrt(variance.get(1) + varianceEpsilon), offset.get(0) + (x.get(1, 0, 0) - mean.get(0)) * 1 / Math.sqrt(variance.get(0) + varianceEpsilon), offset.get(1) + (x.get(1, 0, 1) - mean.get(1)) * 1 / Math.sqrt(variance.get(1) + varianceEpsilon) ]]); return [2 /*return*/]; } }); }); }); it('simple batchnorm3D, 2x1x2', function () { return __awaiter(_this, void 0, void 0, function () { var xT, meanT, varianceT, offsetT, scaleT, varianceEpsilon, result, x, mean, variance, offset, scale, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: xT = tf.tensor3d([2, 4, 9, 23], [2, 1, 2]); meanT = tf.tensor1d([1, 2]); varianceT = tf.tensor1d([2, 3]); offsetT = tf.tensor1d([3, 4]); scaleT = tf.tensor1d([4, 5]); varianceEpsilon = .001; result = tf.batchNorm3d(xT, meanT, varianceT, offsetT, scaleT, varianceEpsilon); return [4 /*yield*/, xT.buffer()]; case 1: x = _b.sent(); return [4 /*yield*/, meanT.buffer()]; case 2: mean = _b.sent(); return [4 /*yield*/, varianceT.buffer()]; case 3: variance = _b.sent(); return [4 /*yield*/, offsetT.buffer()]; case 4: offset = _b.sent(); return [4 /*yield*/, scaleT.buffer()]; case 5: scale = _b.sent(); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 6: _a.apply(void 0, [_b.sent(), [ offset.get(0) + (x.get(0, 0, 0) - mean.get(0)) * scale.get(0) / Math.sqrt(variance.get(0) + varianceEpsilon), offset.get(1) + (x.get(0, 0, 1) - mean.get(1)) * scale.get(1) / Math.sqrt(variance.get(1) + varianceEpsilon), offset.get(0) + (x.get(1, 0, 0) - mean.get(0)) * scale.get(0) / Math.sqrt(variance.get(0) + varianceEpsilon), offset.get(1) + (x.get(1, 0, 1) - mean.get(1)) * scale.get(1) / Math.sqrt(variance.get(1) + varianceEpsilon) ]]); return [2 /*return*/]; } }); }); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var x, mean, variance, offset, scale, varianceEpsilon, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = [[[2, 4]], [[9, 23]]]; mean = [1, 2]; variance = [2, 3]; offset = [3, 4]; scale = [4, 5]; varianceEpsilon = .001; result = tf.batchNorm3d(x, mean, variance, offset, scale, varianceEpsilon); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [ offset[0] + (x[0][0][0] - mean[0]) * scale[0] / Math.sqrt(variance[0] + varianceEpsilon), offset[1] + (x[0][0][1] - mean[1]) * scale[1] / Math.sqrt(variance[1] + varianceEpsilon), offset[0] + (x[1][0][0] - mean[0]) * scale[0] / Math.sqrt(variance[0] + varianceEpsilon), offset[1] + (x[1][0][1] - mean[1]) * scale[1] / Math.sqrt(variance[1] + varianceEpsilon) ]]); return [2 /*return*/]; } }); }); }); it('batchnorm3D, x,mean,var,offset,scale are all 3D', function () { return __awaiter(_this, void 0, void 0, function () { var shape, xT, meanT, varianceT, offsetT, scaleT, varianceEpsilon, result, x, mean, variance, offset, scale, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: shape = [2, 1, 2]; xT = tf.tensor3d([2, 4, 9, 23], shape); meanT = tf.tensor3d([1, 2, 3, 4], shape); varianceT = tf.tensor3d([2, 3, 4, 5], shape); offsetT = tf.tensor3d([3, 4, 5, 6], shape); scaleT = tf.tensor3d([4, 5, 6, 7], shape); varianceEpsilon = .001; result = tf.batchNorm3d(xT, meanT, varianceT, offsetT, scaleT, varianceEpsilon); return [4 /*yield*/, xT.buffer()]; case 1: x = _b.sent(); return [4 /*yield*/, meanT.buffer()]; case 2: mean = _b.sent(); return [4 /*yield*/, varianceT.buffer()]; case 3: variance = _b.sent(); return [4 /*yield*/, offsetT.buffer()]; case 4: offset = _b.sent(); return [4 /*yield*/, scaleT.buffer()]; case 5: scale = _b.sent(); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 6: _a.apply(void 0, [_b.sent(), [ offset.get(0, 0, 0) + (x.get(0, 0, 0) - mean.get(0, 0, 0)) * scale.get(0, 0, 0) / Math.sqrt(variance.get(0, 0, 0) + varianceEpsilon), offset.get(0, 0, 1) + (x.get(0, 0, 1) - mean.get(0, 0, 1)) * scale.get(0, 0, 1) / Math.sqrt(variance.get(0, 0, 1) + varianceEpsilon), offset.get(1, 0, 0) + (x.get(1, 0, 0) - mean.get(1, 0, 0)) * scale.get(1, 0, 0) / Math.sqrt(variance.get(1, 0, 0) + varianceEpsilon), offset.get(1, 0, 1) + (x.get(1, 0, 1) - mean.get(1, 0, 1)) * scale.get(1, 0, 1) / Math.sqrt(variance.get(1, 0, 1) + varianceEpsilon) ]]); return [2 /*return*/]; } }); }); }); it('simple batchnorm3D gradients, 2x1x2', function () { return __awaiter(_this, void 0, void 0, function () { var x, mean, variance, offset, scale, varianceEpsilon, dy, gradX, _a, gradMean, _b, gradVariance, _c, gradOffset, _d, gradScale, _e; return __generator(this, function (_f) { switch (_f.label) { case 0: x = tf.tensor3d([2, 4, 9, 23], [2, 1, 2]); mean = tf.tensor1d([1, 2]); variance = tf.tensor1d([2, 3]); offset = tf.tensor1d([3, 4]); scale = tf.tensor1d([2, 5]); varianceEpsilon = .001; dy = tf.tensor3d([1, 1, 1, 1], [2, 1, 2]); gradX = tf.grad(function (x) { return tf.batchNorm3d(x, mean, variance, offset, scale, varianceEpsilon); })(x, dy); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradX.data()]; case 1: _a.apply(void 0, [_f.sent(), [1.414, 2.887, 1.414, 2.887]]); expect(gradX.shape).toEqual([2, 1, 2]); gradMean = tf.grad(function (mean) { return tf.batchNorm3d(x, mean, variance, offset, scale, varianceEpsilon); })(mean, dy); _b = test_util_1.expectArraysClose; return [4 /*yield*/, gradMean.data()]; case 2: _b.apply(void 0, [_f.sent(), [-2.828, -5.773]]); expect(gradMean.shape).toEqual([2]); gradVariance = tf.grad(function (variance) { return tf.batchNorm3d(x, mean, variance, offset, scale, varianceEpsilon); })(variance, dy); _c = test_util_1.expectArraysClose; return [4 /*yield*/, gradVariance.data()]; case 3: _c.apply(void 0, [_f.sent(), [-3.180, -11.060]]); expect(gradVariance.shape).toEqual([2]); gradOffset = tf.grad(function (offset) { return tf.batchNorm3d(x, mean, variance, offset, scale, varianceEpsilon); })(offset, dy); _d = test_util_1.expectArraysClose; return [4 /*yield*/, gradOffset.data()]; case 4: _d.apply(void 0, [_f.sent(), [2, 2]]); expect(gradOffset.shape).toEqual([2]); gradScale = tf.grad(function (scale) { return tf.batchNorm3d(x, mean, variance, offset, scale, varianceEpsilon); })(scale, dy); _e = test_util_1.expectArraysClose; return [4 /*yield*/, gradScale.data()]; case 5: _e.apply(void 0, [_f.sent(), [6.362, 13.277]]); expect(gradScale.shape).toEqual([2]); return [2 /*return*/]; } }); }); }); it('batchnorm3D gradients, same shapes in x, mean and variance', function () { return __awaiter(_this, void 0, void 0, function () { var x, mean, variance, scale, offset, varianceEpsilon, dy, gradX, _a, gradMean, _b, gradVariance, _c, gradOffset, _d, gradScale, _e; return __generator(this, function (_f) { switch (_f.label) { case 0: x = tf.tensor3d([10, 20, 30, 40], [2, 1, 2]); mean = tf.tensor3d([0, 5, 10, 15], [2, 1, 2]); variance = tf.tensor3d([2, 4, 6, 8], [2, 1, 2]); scale = tf.tensor3d([2, 5, 2, 5], [2, 1, 2]); offset = tf.tensor3d([0, 0, 0, 0], [2, 1, 2]); varianceEpsilon = .001; dy = tf.tensor3d([1, 1, 1, 1], [2, 1, 2]); gradX = tf.grad(function (x) { return tf.batchNorm3d(x, mean, variance, offset, scale, varianceEpsilon); })(x, dy); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradX.data()]; case 1: _a.apply(void 0, [_f.sent(), [1.414, 2.500, 0.816, 1.768]]); expect(gradX.shape).toEqual([2, 1, 2]); gradMean = tf.grad(function (mean) { return tf.batchNorm3d(x, mean, variance, offset, scale, varianceEpsilon); })(mean, dy); _b = test_util_1.expectArraysClose; return [4 /*yield*/, gradMean.data()]; case 2: _b.apply(void 0, [_f.sent(), [-1.414, -2.500, -0.816, -1.768]]); expect(gradMean.shape).toEqual([2, 1, 2]); gradVariance = tf.grad(function (variance) { return tf.batchNorm3d(x, mean, variance, offset, scale, varianceEpsilon); })(variance, dy); _c = test_util_1.expectArraysClose; return [4 /*yield*/, gradVariance.data()]; case 3: _c.apply(void 0, [_f.sent(), [-3.533, -4.686, -1.360, -2.762]]); expect(gradVariance.shape).toEqual([2, 1, 2]); gradOffset = tf.grad(function (offset) { return tf.batchNorm3d(x, mean, variance, offset, scale, varianceEpsilon); })(offset, dy); _d = test_util_1.expectArraysClose; return [4 /*yield*/, gradOffset.data()]; case 4: _d.apply(void 0, [_f.sent(), [1, 1, 1, 1]]); expect(gradOffset.shape).toEqual([2, 1, 2]); gradScale = tf.grad(function (scale) { return tf.batchNorm3d(x, mean, variance, offset, scale, varianceEpsilon); })(scale, dy); _e = test_util_1.expectArraysClose; return [4 /*yield*/, gradScale.data()]; case 5: _e.apply(void 0, [_f.sent(), [7.069, 7.499, 8.164, 8.838]]); expect(gradScale.shape).toEqual([2, 1, 2]); return [2 /*return*/]; } }); }); }); it('batchnorm matches tensorflow, 2x3x3', function () { return __awaiter(_this, void 0, void 0, function () { var x, mean, variance, offset, scale, varianceEpsilon, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.tensor3d([ 0.49955603, 0.04158615, -1.09440524, 2.03854165, -0.61578344, 2.87533573, 1.18105987, 0.807462, 1.87888837, 2.26563962, -0.37040935, 1.35848753, -0.75347094, 0.15683117, 0.91925946, 0.34121279, 0.92717143, 1.89683965 ], [2, 3, 3]); mean = tf.tensor1d([0.39745062, -0.48062894, 0.4847822]); variance = tf.tensor1d([0.32375343, 0.67117643, 1.08334653]); offset = tf.tensor1d([0.69398749, -1.29056387, 0.9429723]); scale = tf.tensor1d([-0.5607271, 0.9878457, 0.25181573]); varianceEpsilon = .001; result = tf.batchNorm3d(x, mean, variance, offset, scale, varianceEpsilon); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [ 0.59352049, -0.66135202, 0.5610874, -0.92077015, -1.45341019, 1.52106473, -0.07704776, 0.26144429, 1.28010017, -1.14422404, -1.15776136, 1.15425493, 1.82644104, -0.52249442, 1.04803919, 0.74932291, 0.40568101, 1.2844412 ]]); return [2 /*return*/]; } }); }); }); }); jasmine_util_1.describeWithFlags('batchNorm2D', jasmine_util_1.ALL_ENVS, function () { it('simple batchnorm2D, no offset or scale, 2x2', function () { return __awaiter(_this, void 0, void 0, function () { var xT, meanT, varianceT, varianceEpsilon, result, x, mean, variance, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: xT = tf.tensor2d([2, 4, 9, 23], [2, 2]); meanT = tf.tensor1d([1, 2]); varianceT = tf.tensor1d([2, 3]); varianceEpsilon = .001; result = tf.batchNorm2d(xT, meanT, varianceT, undefined, undefined, varianceEpsilon); return [4 /*yield*/, xT.buffer()]; case 1: x = _b.sent(); return [4 /*yield*/, meanT.buffer()]; case 2: mean = _b.sent(); return [4 /*yield*/, varianceT.buffer()]; case 3: variance = _b.sent(); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 4: _a.apply(void 0, [_b.sent(), [ (x.get(0, 0) - mean.get(0)) * 1 / Math.sqrt(variance.get(0) + varianceEpsilon), (x.get(0, 1) - mean.get(1)) * 1 / Math.sqrt(variance.get(1) + varianceEpsilon), (x.get(1, 0) - mean.get(0)) * 1 / Math.sqrt(variance.get(0) + varianceEpsilon), (x.get(1, 1) - mean.get(1)) * 1 / Math.sqrt(variance.get(1) + varianceEpsilon) ]]); return [2 /*return*/]; } }); }); }); it('simple batchnorm2D, no offset, 2x2', function () { return __awaiter(_this, void 0, void 0, function () { var xT, meanT, varianceT, scaleT, varianceEpsilon, result, x, mean, variance, scale, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: xT = tf.tensor2d([2, 4, 9, 23], [2, 2]); meanT = tf.tensor1d([1, 2]); varianceT = tf.tensor1d([2, 3]); scaleT = tf.tensor1d([4, 5]); varianceEpsilon = .001; result = tf.batchNorm2d(xT, meanT, varianceT, undefined, scaleT, varianceEpsilon); return [4 /*yield*/, xT.buffer()]; case 1: x = _b.sent(); return [4 /*yield*/, meanT.buffer()]; case 2: mean = _b.sent(); return [4 /*yield*/, varianceT.buffer()]; case 3: variance = _b.sent(); return [4 /*yield*/, scaleT.buffer()]; case 4: scale = _b.sent(); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 5: _a.apply(void 0, [_b.sent(), [ (x.get(0, 0) - mean.get(0)) * scale.get(0) / Math.sqrt(variance.get(0) + varianceEpsilon), (x.get(0, 1) - mean.get(1)) * scale.get(1) / Math.sqrt(variance.get(1) + varianceEpsilon), (x.get(1, 0) - mean.get(0)) * scale.get(0) / Math.sqrt(variance.get(0) + varianceEpsilon), (x.get(1, 1) - mean.get(1)) * scale.get(1) / Math.sqrt(variance.get(1) + varianceEpsilon) ]]); return [2 /*return*/]; } }); }); }); it('simple batchnorm2D, no scale, 2x2', function () { return __awaiter(_this, void 0, void 0, function () { var xT, meanT, varianceT, offsetT, varianceEpsilon, result, offset, mean, variance, x, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: xT = tf.tensor2d([2, 4, 9, 23], [2, 2]); meanT = tf.tensor1d([1, 2]); varianceT = tf.tensor1d([2, 3]); offsetT = tf.tensor1d([4, 5]); varianceEpsilon = .001; result = tf.batchNorm2d(xT, meanT, varianceT, offsetT, undefined, varianceEpsilon); return [4 /*yield*/, offsetT.array()]; case 1: offset = _b.sent(); return [4 /*yield*/, meanT.array()]; case 2: mean = _b.sent(); return [4 /*yield*/, varianceT.array()]; case 3: variance = _b.sent(); return [4 /*yield*/, xT.array()]; case 4: x = _b.sent(); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 5: _a.apply(void 0, [_b.sent(), [ offset[0] + (x[0][0] - mean[0]) * 1 / Math.sqrt(variance[0] + varianceEpsilon), offset[1] + (x[0][1] - mean[1]) * 1 / Math.sqrt(variance[1] + varianceEpsilon), offset[0] + (x[1][0] - mean[0]) * 1 / Math.sqrt(variance[0] + varianceEpsilon), offset[1] + (x[1][1] - mean[1]) * 1 / Math.sqrt(variance[1] + varianceEpsilon) ]]); return [2 /*return*/]; } }); }); }); it('simple batchnorm2D, 2x2', function () { return __awaiter(_this, void 0, void 0, function () { var xT, meanT, varianceT, offsetT, scaleT, varianceEpsilon, result, offset, mean, variance, scale, x, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: xT = tf.tensor2d([2, 4, 9, 23], [2, 2]); meanT = tf.tensor1d([1, 2]); varianceT = tf.tensor1d([2, 3]); offsetT = tf.tensor1d([3, 4]); scaleT = tf.tensor1d([4, 5]); varianceEpsilon = .001; result = tf.batchNorm2d(xT, meanT, varianceT, offsetT, scaleT, varianceEpsilon); return [4 /*yield*/, offsetT.array()]; case 1: offset = _b.sent(); return [4 /*yield*/, meanT.array()]; case 2: mean = _b.sent(); return [4 /*yield*/, varianceT.array()]; case 3: variance = _b.sent(); return [4 /*yield*/, scaleT.array()]; case 4: scale = _b.sent(); return [4 /*yield*/, xT.array()]; case 5: x = _b.sent(); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 6: _a.apply(void 0, [_b.sent(), [ offset[0] + (x[0][0] - mean[0]) * scale[0] / Math.sqrt(variance[0] + varianceEpsilon), offset[1] + (x[0][1] - mean[1]) * scale[1] / Math.sqrt(variance[1] + varianceEpsilon), offset[0] + (x[1][0] - mean[0]) * scale[0] / Math.sqrt(variance[0] + varianceEpsilon), offset[1] + (x[1][1] - mean[1]) * scale[1] / Math.sqrt(variance[1] + varianceEpsilon) ]]); return [2 /*return*/]; } }); }); }); it('simple batchnorm2D gradients, 2x2', function () { return __awaiter(_this, void 0, void 0, function () { var x, mean, variance, offset, scale, varianceEpsilon, dy, _a, gradX, gradMean, gradVariance, gradOffset, gradScale, _b, _c, _d, _e, _f; return __generator(this, function (_g) { switch (_g.label) { case 0: x = tf.tensor2d([2, 4, 9, 23], [2, 2]); mean = tf.tensor1d([1, 2]); variance = tf.tensor1d([2, 3]); offset = tf.tensor1d([3, 4]); scale = tf.tensor1d([2, 5]); varianceEpsilon = .001; dy = tf.tensor2d([1, 1, 1, 1], [2, 2]); _a = tf.grads(function (x, mean, variance, offset, scale) { return tf.batchNorm2d(x, mean, variance, offset, scale, varianceEpsilon); })([x, mean, variance, offset, scale], dy), gradX = _a[0], gradMean = _a[1], gradVariance = _a[2], gradOffset = _a[3], gradScale = _a[4]; _b = test_util_1.expectArraysClose; return [4 /*yield*/, gradX.data()]; case 1: _b.apply(void 0, [_g.sent(), [1.414, 2.887, 1.414, 2.887]]); expect(gradX.shape).toEqual([2, 2]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, gradMean.data()]; case 2: _c.apply(void 0, [_g.sent(), [-2.828, -5.773]]); expect(gradMean.shape).toEqual([2]); _d = test_util_1.expectArraysClose; return [4 /*yield*/, gradVariance.data()]; case 3: _d.apply(void 0, [_g.sent(), [-3.180, -11.060]]); expect(gradVariance.shape).toEqual([2]); _e = test_util_1.expectArraysClose; return [4 /*yield*/, gradOffset.data()]; case 4: _e.apply(void 0, [_g.sent(), [2, 2]]); expect(gradOffset.shape).toEqual([2]); _f = test_util_1.expectArraysClose; return [4 /*yield*/, gradScale.data()]; case 5: _f.apply(void 0, [_g.sent(), [6.362, 13.277]]); expect(gradScale.shape).toEqual([2]); return [2 /*return*/]; } }); }); }); it('gradient with clones batchnorm2D', function () { return __awaiter(_this, void 0, void 0, function () { var x, mean, variance, offset, scale, varianceEpsilon, dy, _a, gradX, gradMean, gradVariance, gradOffset, gradScale, _b, _c, _d, _e, _f; return __generator(this, function (_g) { switch (_g.label) { case 0: x = tf.tensor2d([2, 4, 9, 23], [2, 2]); mean = tf.tensor1d([1, 2]); variance = tf.tensor1d([2, 3]); offset = tf.tensor1d([3, 4]); scale = tf.tensor1d([2, 5]); varianceEpsilon = .001; dy = tf.tensor2d([1, 1, 1, 1], [2, 2]); _a = tf.grads(function (x, mean, variance, offset, scale) { return tf.batchNorm2d(x.clone(), mean.clone(), variance.clone(), offset.clone(), scale.clone(), varianceEpsilon) .clone(); })([x, mean, variance, offset, scale], dy), gradX = _a[0], gradMean = _a[1], gradVariance = _a[2], gradOffset = _a[3], gradScale = _a[4]; _b = test_util_1.expectArraysClose; return [4 /*yield*/, gradX.data()]; case 1: _b.apply(void 0, [_g.sent(), [1.414, 2.887, 1.414, 2.887]]); expect(gradX.shape).toEqual([2, 2]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, gradMean.data()]; case 2: _c.apply(void 0, [_g.sent(), [-2.828, -5.773]]); expect(gradMean.shape).toEqual([2]); _d = test_util_1.expectArraysClose; return [4 /*yield*/, gradVariance.data()]; case 3: _d.apply(void 0, [_g.sent(), [-3.180, -11.060]]); expect(gradVariance.shape).toEqual([2]); _e = test_util_1.expectArraysClose; return [4 /*yield*/, gradOffset.data()]; case 4: _e.apply(void 0, [_g.sent(), [2, 2]]); expect(gradOffset.shape).toEqual([2]); _f = test_util_1.expectArraysClose; return [4 /*yield*/, gradScale.data()]; case 5: _f.apply(void 0, [_g.sent(), [6.362, 13.277]]); expect(gradScale.shape).toEqual([2]); return [2 /*return*/]; } }); }); }); it('batchnorm2D gradients, same shapes in x, mean and variance', function () { return __awaiter(_this, void 0, void 0, function () { var x, mean, variance, scale, offset, varianceEpsilon, dy, gradX, _a, gradMean, _b, gradVariance, _c, gradOffset, _d, gradScale, _e; return __generator(this, function (_f) { switch (_f.label) { case 0: x = tf.tensor2d([10, 20, 30, 40], [2, 2]); mean = tf.tensor2d([0, 5, 10, 15], [2, 2]); variance = tf.tensor2d([2, 4, 6, 8], [2, 2]); scale = tf.tensor2d([2, 5, 2, 5], [2, 2]); offset = tf.tensor2d([0, 0, 0, 0], [2, 2]); varianceEpsilon = .001; dy = tf.tensor2d([1, 1, 1, 1], [2, 2]); gradX = tf.grad(function (x) { return tf.batchNorm2d(x, mean, variance, offset, scale, varianceEpsilon); })(x, dy); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradX.data()]; case 1: _a.apply(void 0, [_f.sent(), [1.414, 2.500, 0.816, 1.768]]); expect(gradX.shape).toEqual([2, 2]); gradMean = tf.grad(function (mean) { return tf.batchNorm2d(x, mean, variance, offset, scale, varianceEpsilon); })(mean, dy); _b = test_util_1.expectArraysClose; return [4 /*yield*/, gradMean.data()]; case 2: _b.apply(void 0, [_f.sent(), [-1.414, -2.500, -0.816, -1.768]]); expect(gradMean.shape).toEqual([2, 2]); gradVariance = tf.grad(function (variance) { return tf.batchNorm2d(x, mean, variance, offset, scale, varianceEpsilon); })(variance, dy); _c = test_util_1.expectArraysClose; return [4 /*yield*/, gradVariance.data()]; case 3: _c.apply(void 0, [_f.sent(), [-3.533, -4.686, -1.360, -2.762]]); expect(gradVariance.shape).toEqual([2, 2]); gradOffset = tf.grad(function (offset) { return tf.batchNorm2d(x, mean, variance, offset, scale, varianceEpsilon); })(offset, dy); _d = test_util_1.expectArraysClose; return [4 /*yield*/, gradOffset.data()]; case 4: _d.apply(void 0, [_f.sent(), [1, 1, 1, 1]]); expect(gradOffset.shape).toEqual([2, 2]); gradScale = tf.grad(function (scale) { return tf.batchNorm2d(x, mean, variance, offset, scale, varianceEpsilon); })(scale, dy); _e = test_util_1.expectArraysClose; return [4 /*yield*/, gradScale.data()]; case 5: _e.apply(void 0, [_f.sent(), [7.069, 7.499, 8.164, 8.838]]); expect(gradScale.shape).toEqual([2, 2]); return [2 /*return*/]; } }); }); }); it('gradient with clones', function () { var x = tf.zeros([2, 2]); var mean = tf.zeros([2, 2]); var variance = tf.zeros([2, 2]); var scale = tf.zeros([2, 2]); var offset = tf.zeros([2, 2]); var varianceEpsilon = .001; var gradF = tf.grads(function (x, mean, variance, offset, scale) { return tf.batchNorm2d(x.clone(), mean.clone(), variance.clone(), offset.clone(), scale.clone(), varianceEpsilon) .clone(); }); var _a = gradF([x, mean, variance, offset, scale]), gradX = _a[0], gradMean = _a[1], gradVariance = _a[2], gradOffset = _a[3], gradScale = _a[4]; expect(gradX.shape).toEqual(x.shape); expect(gradMean.shape).toEqual(mean.shape); expect(gradVariance.shape).toEqual(variance.shape); expect(gradOffset.shape).toEqual(offset.shape); expect(gradScale.shape).toEqual(scale.shape); }); it('batchnorm2D matches tensorflow, 3x3', function () { return __awaiter(_this, void 0, void 0, function () { var x, mean, variance, offset, scale, varianceEpsilon, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.tensor2d([ 0.3136892, 0.92389025, 0.594782, 0.05021042, 0.67545404, 0.93910035, 0.13277993, 0.96474269, 0.88608916 ], [3, 3]); mean = tf.tensor1d([0.19526312, 0.74857256, 0.45166398]); variance = tf.tensor1d([0.22963001, 0.61521992, 0.46623685]); offset = tf.tensor1d([0.43098484, 0.77712237, 0.47916298]); scale = tf.tensor1d([0.62186907, 0.85673736, 0.19201061]); varianceEpsilon = .001; result = tf.batchNorm2d(x, mean, variance, offset, scale, varianceEpsilon); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [ 0.58433646, 0.96846228, 0.51936529, 0.24315402, 0.69732157, 0.61608542, 0.35007446, 1.01304821, 0.60119441 ]]); return [2 /*return*/]; } }); }); }); it('throws when passed x as a non-tensor', function () { var mean = tf.tensor1d([1, 2]); var variance = tf.tensor1d([2, 3]); expect(function () { return tf.batchNorm({}, mean, variance); }) .toThrowError(/Argument 'x' passed to 'batchNorm' must be a Tensor/); }); it('throws when passed mean as a non-tensor', function () { var x = tf.tensor4d([2, 4, 9, 23], [2, 1, 1, 2]); var variance = tf.tensor1d([2, 3]); expect(function () { return tf.batchNorm(x, {}, variance); }) .toThrowError(/Argument 'mean' passed to 'batchNorm' must be a Tensor/); }); it('throws when passed variance as a non-tensor', function () { var x = tf.tensor4d([2, 4, 9, 23], [2, 1, 1, 2]); var mean = tf.tensor1d([1, 2]); var e = /Argument 'variance' passed to 'batchNorm' must be a Tensor/; expect(function () { return tf.batchNorm(x, mean, {}); }).toThrowError(e); }); it('throws when passed scale as a non-tensor', function () { var x = tf.tensor4d([2, 4, 9, 23], [2, 1, 1, 2]); var mean = tf.tensor1d([1, 2]); var variance = tf.tensor1d([2, 3]); var epsilon = .001; expect(function () { return tf.batchNorm(x, mean, variance, epsilon, {}); }) .toThrowError(/Argument 'scale' passed to 'batchNorm' must be a Tensor/); }); it('throws when passed offset as a non-tensor', function () { var x = tf.tensor4d([2, 4, 9, 23], [2, 1, 1, 2]); var mean = tf.tensor1d([1, 2]); var variance = tf.tensor1d([2, 3]); var epsilon = .001; var scale = tf.tensor1d([0.62186907, 0.85673736, 0.19201061]); var e = /Argument 'offset' passed to 'batchNorm' must be a Tensor/; expect(function () { return tf.batchNorm(x, mean, variance, {}, scale, epsilon); }) .toThrowError(e); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var x, mean, variance, offset, scale, varianceEpsilon, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = [[2, 4], [9, 23]]; mean = [1, 2]; variance = [2, 3]; offset = [3, 4]; scale = [4, 5]; varianceEpsilon = .001; result = tf.batchNorm2d(x, mean, variance, offset, scale, varianceEpsilon); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [ offset[0] + (x[0][0] - mean[0]) * scale[0] / Math.sqrt(variance[0] + varianceEpsilon), offset[1] + (x[0][1] - mean[1]) * scale[1] / Math.sqrt(variance[1] + varianceEpsilon), offset[0] + (x[1][0] - mean[0]) * scale[0] / Math.sqrt(variance[0] + varianceEpsilon), offset[1] + (x[1][1] - mean[1]) * scale[1] / Math.sqrt(variance[1] + varianceEpsilon) ]]); return [2 /*return*/]; } }); }); }); it('throws error when x is a string tensor', function () { var mean = [1, 2]; var variance = [2, 3]; var offset = [3, 4]; var scale = [4, 5]; var varianceEpsilon = .001; var f = function () { return tf.batchNorm2d([['a', 'b'], ['c', 'd']], mean, variance, offset, scale, varianceEpsilon); }; expect(f).toThrowError(/Argument 'x' passed to 'batchNorm' must be numeric/); }); it('throws error when mean is a string tensor', function () { var x = [[2, 4], [9, 23]]; var variance = [2, 3]; var offset = [3, 4]; var scale = [4, 5]; var varianceEpsilon = .001; var f = function () { return tf.batchNorm2d(x, ['a', 'b'], variance, offset, scale, varianceEpsilon); }; expect(f).toThrowError(/Argument 'mean' passed to 'batchNorm' must be numeric/); }); it('throws error when variance is a string tensor', function () { var x = [[2, 4], [9, 23]]; var mean = [1, 2]; var offset = [3, 4]; var scale = [4, 5]; var varianceEpsilon = .001; var f = function () { return tf.batchNorm2d(x, mean, ['a', 'b'], offset, scale, varianceEpsilon); }; expect(f).toThrowError(/'variance' passed to 'batchNorm' must be numeric/); }); it('throws error when scale is a string tensor', function () { var x = [[2, 4], [9, 23]]; var mean = [1, 2]; var variance = [2, 3]; var offset = [3, 4]; var varianceEpsilon = .001; var f = function () { return tf.batchNorm2d(x, mean, variance, offset, ['a', 'b'], varianceEpsilon); }; expect(f).toThrowError(/'scale' passed to 'batchNorm' must be numeric/); }); it('throws error when offset is a string tensor', function () { var x = [[2, 4], [9, 23]]; var mean = [1, 2]; var variance = [2, 3]; var scale = [4, 5]; var varianceEpsilon = .001; var f = function () { return tf.batchNorm2d(x, mean, variance, ['a', 'b'], scale, varianceEpsilon); }; expect(f).toThrowError(/'offset' passed to 'batchNorm' must be numeric/); }); }); jasmine_util_1.describeWithFlags('deprecated batchNormalization', jasmine_util_1.ALL_ENVS, function () { beforeAll(function () { // Silence deprecation warnings. spyOn(console, 'warn'); }); it('simple batchnorm2D, 2x2', function () { return __awaiter(_this, void 0, void 0, function () { var xT, meanT, varianceT, offsetT, scaleT, varianceEpsilon, result, offset, mean, variance, scale, x, _a, result2, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: xT = tf.tensor2d([2, 4, 9, 23], [2, 2]); meanT = tf.tensor1d([1, 2]); varianceT = tf.tensor1d([2, 3]); offsetT = tf.tensor1d([3, 4]); scaleT = tf.tensor1d([4, 5]); varianceEpsilon = .001; result = tf.batchNormalization(xT, meanT, varianceT, varianceEpsilon, scaleT, offsetT); return [4 /*yield*/, offsetT.array()]; case 1: offset = _d.sent(); return [4 /*yield*/, meanT.array()]; case 2: mean = _d.sent(); return [4 /*yield*/, varianceT.array()]; case 3: variance = _d.sent(); return [4 /*yield*/, scaleT.array()]; case 4: scale = _d.sent(); return [4 /*yield*/, xT.array()]; case 5: x = _d.sent(); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 6: _a.apply(void 0, [_d.sent(), [ offset[0] + (x[0][0] - mean[0]) * scale[0] / Math.sqrt(variance[0] + varianceEpsilon), offset[1] + (x[0][1] - mean[1]) * scale[1] / Math.sqrt(variance[1] + varianceEpsilon), offset[0] + (x[1][0] - mean[0]) * scale[0] / Math.sqrt(variance[0] + varianceEpsilon), offset[1] + (x[1][1] - mean[1]) * scale[1] / Math.sqrt(variance[1] + varianceEpsilon) ]]); result2 = tf.batchNormalization2d(xT, meanT, varianceT, varianceEpsilon, scaleT, offsetT); _b = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 7: _c = [_d.sent()]; return [4 /*yield*/, result2.data()]; case 8: _b.apply(void 0, _c.concat([_d.sent()])); return [2 /*return*/]; } }); }); }); }); //# sourceMappingURL=batchnorm_test.js.map