"use strict"; /** * @license * Copyright 2017 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var _this = this; Object.defineProperty(exports, "__esModule", { value: true }); var tf = require("../index"); var jasmine_util_1 = require("../jasmine_util"); var test_util_1 = require("../test_util"); jasmine_util_1.describeWithFlags('prelu', jasmine_util_1.ALL_ENVS, function () { it('basic', function () { return __awaiter(_this, void 0, void 0, function () { var x, a, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.tensor1d([0, 1, -2, -4]); a = tf.tensor1d([0.15, 0.2, 0.25, 0.15]); result = tf.prelu(x, a); expect(result.shape).toEqual(x.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, 1, -0.5, -0.6]]); return [2 /*return*/]; } }); }); }); it('basic TensorLike', function () { return __awaiter(_this, void 0, void 0, function () { var x, a, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = [0, 1, -2, -4]; a = [0.15, 0.2, 0.25, 0.15]; result = tf.prelu(x, a); expect(result.shape).toEqual([4]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, 1, -0.5, -0.6]]); return [2 /*return*/]; } }); }); }); it('basic TensorLike chained', function () { return __awaiter(_this, void 0, void 0, function () { var x, a, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.tensor1d([0, 1, -2, -4]); a = [0.15, 0.2, 0.25, 0.15]; result = x.prelu(a); expect(result.shape).toEqual(x.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, 1, -0.5, -0.6]]); return [2 /*return*/]; } }); }); }); it('derivative', function () { return __awaiter(_this, void 0, void 0, function () { var x, a, dy, dx, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.tensor1d([0.5, 3, -0.1, -4]); a = tf.tensor1d([0.2, 0.4, 0.25, 0.15]); dy = tf.tensor1d([1, 1, 1, 1]); dx = tf.grad(function (x) { return tf.prelu(x, a); })(x, dy); expect(dx.shape).toEqual(x.shape); expect(dx.dtype).toEqual('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, dx.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 1, 0.25, 0.15]]); return [2 /*return*/]; } }); }); }); it('gradient with clones', function () { return __awaiter(_this, void 0, void 0, function () { var x, a, dx, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.tensor1d([0.5, 3, -0.1, -4]); a = tf.tensor1d([0.2, 0.4, 0.25, 0.15]); dx = tf.grad(function (x) { return tf.prelu(x.clone(), a).clone(); })(x); expect(dx.shape).toEqual(x.shape); expect(dx.dtype).toEqual('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, dx.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 1, 0.25, 0.15]]); return [2 /*return*/]; } }); }); }); it('derivative where alpha got broadcasted', function () { return __awaiter(_this, void 0, void 0, function () { var x, a, dy, da, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.tensor2d([[0.5, 3, -0.1, -4]]); a = tf.tensor2d([[0.2]]); dy = tf.tensor2d([[1, 1, 1, 1]]); da = tf.grad(function (a) { return tf.prelu(x, a); })(a, dy); expect(da.shape).toEqual(a.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _a.apply(void 0, [_b.sent(), [-4.1]]); return [2 /*return*/]; } }); }); }); it('throws when passed x as a non-tensor', function () { expect(function () { return tf.prelu({}, tf.scalar(1)); }) .toThrowError(/Argument 'x' passed to 'prelu' must be a Tensor/); }); it('throws when passed alpha as a non-tensor', function () { expect(function () { return tf.prelu(tf.scalar(1), {}); }) .toThrowError(/Argument 'alpha' passed to 'prelu' must be a Tensor/); }); it('throws for string tensor', function () { expect(function () { return tf.prelu(['a'], 0.1); }) .toThrowError(/Argument 'x' passed to 'prelu' must be numeric tensor/); }); }); jasmine_util_1.describeWithFlags('maximum', jasmine_util_1.ALL_ENVS, function () { it('float32 and float32', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([0.5, 3, -0.1, -4]); b = tf.tensor1d([0.2, 0.4, 0.25, 0.15]); result = tf.maximum(a, b); expect(result.shape).toEqual(a.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [0.5, 3, 0.25, 0.15]]); return [2 /*return*/]; } }); }); }); it('TensorLike', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = [0.5, 3, -0.1, -4]; b = [0.2, 0.4, 0.25, 0.15]; result = tf.maximum(a, b); expect(result.shape).toEqual([4]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [0.5, 3, 0.25, 0.15]]); return [2 /*return*/]; } }); }); }); it('TensorLike chained', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([0.5, 3, -0.1, -4]); b = [0.2, 0.4, 0.25, 0.15]; result = a.maximum(b); expect(result.shape).toEqual([4]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [0.5, 3, 0.25, 0.15]]); return [2 /*return*/]; } }); }); }); it('int32 and int32', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([1, 5, 2, 3], 'int32'); b = tf.tensor1d([2, 3, 1, 4], 'int32'); result = tf.maximum(a, b); expect(result.shape).toEqual(a.shape); expect(result.dtype).toBe('int32'); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [2, 5, 2, 4]]); return [2 /*return*/]; } }); }); }); it('bool and bool', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([true, false, false, true], 'bool'); b = tf.tensor1d([false, false, true, true], 'bool'); result = tf.maximum(a, b); expect(result.shape).toEqual(a.shape); expect(result.dtype).toBe('int32'); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 0, 1, 1]]); return [2 /*return*/]; } }); }); }); it('upcasts when dtypes dont match', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([1, 0, 0, 1], 'float32'); b = tf.tensor1d([0, 0, 1, 1], 'int32'); res = tf.maximum(a, b); expect(res.shape).toEqual(a.shape); expect(res.dtype).toBe('float32'); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 0, 1, 1]]); return [2 /*return*/]; } }); }); }); it('propagates NaN', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([0.5, -0.1, NaN]); b = tf.tensor1d([0.2, 0.3, 0.25]); result = tf.maximum(a, b); expect(result.shape).toEqual(a.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [0.5, 0.3, NaN]]); return [2 /*return*/]; } }); }); }); it('broadcasts Tensor1D and scalar', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([0.5, 3, -0.1, -4]); b = tf.scalar(0.6); result = tf.maximum(a, b); expect(result.shape).toEqual(a.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [0.6, 3, 0.6, 0.6]]); return [2 /*return*/]; } }); }); }); it('broadcasts scalar and Tensor1D', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.scalar(0.6); b = tf.tensor1d([0.5, 3, -0.1, -4]); result = tf.maximum(a, b); expect(result.shape).toEqual(b.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [0.6, 3, 0.6, 0.6]]); return [2 /*return*/]; } }); }); }); it('broadcasts Tensor1D and Tensor2D', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([0.5, 0.3]); b = tf.tensor2d([0.2, 0.4, 0.6, 0.15], [2, 2]); result = tf.maximum(a, b); expect(result.shape).toEqual(b.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [0.5, 0.4, 0.6, 0.3]]); return [2 /*return*/]; } }); }); }); it('broadcasts 2x1 Tensor2D and 2x2 Tensor2D', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([0.5, 0.3], [2, 1]); b = tf.tensor2d([0.2, 0.4, 0.6, 0.15], [2, 2]); result = tf.maximum(a, b); expect(result.shape).toEqual(b.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [0.5, 0.5, 0.6, 0.3]]); return [2 /*return*/]; } }); }); }); it('gradients: Scalar', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, dy, grads, _a, da, db, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.scalar(5.2); b = tf.scalar(0.6); dy = tf.scalar(3); grads = tf.grads(function (a, b) { return tf.maximum(a, b); }); _a = grads([a, b], dy), da = _a[0], db = _a[1]; expect(da.shape).toEqual(a.shape); expect(db.shape).toEqual(b.shape); expect(da.dtype).toEqual('float32'); expect(db.dtype).toEqual('float32'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _b.apply(void 0, [_d.sent(), [3 * 1]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, db.data()]; case 2: _c.apply(void 0, [_d.sent(), [3 * 0]]); return [2 /*return*/]; } }); }); }); it('gradient with clones', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, dy, grads, _a, da, db, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.scalar(5.2); b = tf.scalar(0.6); dy = tf.scalar(3); grads = tf.grads(function (a, b) { return tf.maximum(a.clone(), b.clone()).clone(); }); _a = grads([a, b], dy), da = _a[0], db = _a[1]; expect(da.shape).toEqual(a.shape); expect(db.shape).toEqual(b.shape); expect(da.dtype).toEqual('float32'); expect(db.dtype).toEqual('float32'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _b.apply(void 0, [_d.sent(), [3 * 1]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, db.data()]; case 2: _c.apply(void 0, [_d.sent(), [3 * 0]]); return [2 /*return*/]; } }); }); }); it('gradients: Tensor1D', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, dy, grads, _a, da, db, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.tensor1d([1.1, 2.6, 3, 5.9]); b = tf.tensor1d([1.0, 2.7, 3, 5.8]); dy = tf.tensor1d([1, 2, 3, 4]); grads = tf.grads(function (a, b) { return tf.maximum(a, b); }); _a = grads([a, b], dy), da = _a[0], db = _a[1]; expect(da.shape).toEqual(a.shape); expect(db.shape).toEqual(b.shape); expect(da.dtype).toEqual('float32'); expect(db.dtype).toEqual('float32'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _b.apply(void 0, [_d.sent(), [1 * 1, 2 * 0, 3 * 1, 4 * 1]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, db.data()]; case 2: _c.apply(void 0, [_d.sent(), [1 * 0, 2 * 1, 3 * 0, 4 * 0]]); return [2 /*return*/]; } }); }); }); it('gradients: Tensor2D', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, dy, grads, _a, da, db, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.tensor2d([0.5, 0.3, 0.7, 0.9], [2, 2]); b = tf.tensor2d([0.2, 0.4, 0.7, 0.15], [2, 2]); dy = tf.tensor2d([1, 2, 3, 4], [2, 2]); grads = tf.grads(function (a, b) { return tf.maximum(a, b); }); _a = grads([a, b], dy), da = _a[0], db = _a[1]; expect(da.shape).toEqual(a.shape); expect(db.shape).toEqual(b.shape); expect(da.dtype).toEqual('float32'); expect(db.dtype).toEqual('float32'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _b.apply(void 0, [_d.sent(), [1 * 1, 2 * 0, 3 * 1, 4 * 1]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, db.data()]; case 2: _c.apply(void 0, [_d.sent(), [1 * 0, 2 * 1, 3 * 0, 4 * 0]]); return [2 /*return*/]; } }); }); }); it('throws when passed a as a non-tensor', function () { expect(function () { return tf.maximum({}, tf.scalar(1)); }) .toThrowError(/Argument 'a' passed to 'maximum' must be a Tensor/); }); it('throws when passed b as a non-tensor', function () { expect(function () { return tf.maximum(tf.scalar(1), {}); }) .toThrowError(/Argument 'b' passed to 'maximum' must be a Tensor/); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = [[0.5, 3], [-0.1, -4]]; b = [[0.2, 0.4], [0.25, 0.15]]; result = tf.maximum(a, b); expect(result.shape).toEqual([2, 2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [0.5, 3, 0.25, 0.15]]); return [2 /*return*/]; } }); }); }); it('throws for string tensor', function () { expect(function () { return tf.maximum('q', 3); }) .toThrowError(/Argument 'a' passed to 'maximum' must be numeric tensor/); expect(function () { return tf.maximum(3, 'q'); }) .toThrowError(/Argument 'b' passed to 'maximum' must be numeric tensor/); }); }); jasmine_util_1.describeWithFlags('squaredDifference', jasmine_util_1.ALL_ENVS, function () { it('float32 and float32', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([0.5, 3, -0.1, -4]); b = tf.tensor1d([0.2, 0.4, 0.25, 0.15]); result = tf.squaredDifference(a, b); expect(result.shape).toEqual(a.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [ Math.pow(0.5 - 0.2, 2), Math.pow(3 - 0.4, 2), Math.pow(-0.1 - 0.25, 2), Math.pow(-4 - 0.15, 2) ]]); return [2 /*return*/]; } }); }); }); it('TensorLike', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = [0.5, 3, -0.1, -4]; b = [0.2, 0.4, 0.25, 0.15]; result = tf.squaredDifference(a, b); expect(result.shape).toEqual([4]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [ Math.pow(0.5 - 0.2, 2), Math.pow(3 - 0.4, 2), Math.pow(-0.1 - 0.25, 2), Math.pow(-4 - 0.15, 2) ]]); return [2 /*return*/]; } }); }); }); it('TensorLike chained', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([0.5, 3, -0.1, -4]); b = [0.2, 0.4, 0.25, 0.15]; result = a.squaredDifference(b); expect(result.shape).toEqual(a.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [ Math.pow(0.5 - 0.2, 2), Math.pow(3 - 0.4, 2), Math.pow(-0.1 - 0.25, 2), Math.pow(-4 - 0.15, 2) ]]); return [2 /*return*/]; } }); }); }); it('int32 and int32', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([1, 5, 2, 3], 'int32'); b = tf.tensor1d([2, 3, 1, 4], 'int32'); result = tf.squaredDifference(a, b); expect(result.shape).toEqual(a.shape); expect(result.dtype).toBe('int32'); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [ Math.pow(1 - 2, 2), Math.pow(5 - 3, 2), Math.pow(2 - 1, 2), Math.pow(3 - 4, 2) ]]); return [2 /*return*/]; } }); }); }); it('upcasts when dtypes dont match', function () { return __awaiter(_this, void 0, void 0, function () { var res, _a, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: res = tf.squaredDifference(tf.scalar(5, 'int32'), tf.scalar(2, 'float32')); expect(res.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_d.sent(), [9]]); res = tf.squaredDifference(tf.scalar(5, 'int32'), tf.scalar(true, 'bool')); expect(res.dtype).toBe('int32'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 2: _b.apply(void 0, [_d.sent(), [16]]); res = tf.squaredDifference(tf.scalar(5, 'int32'), tf.scalar(false, 'bool')); expect(res.dtype).toBe('int32'); _c = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 3: _c.apply(void 0, [_d.sent(), [25]]); return [2 /*return*/]; } }); }); }); it('propagates NaN', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([0.5, -0.1, NaN]); b = tf.tensor1d([0.2, 0.3, 0.25]); result = tf.squaredDifference(a, b); expect(result.shape).toEqual(a.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [Math.pow(0.5 - 0.2, 2), Math.pow(-0.1 - 0.3, 2), NaN]]); return [2 /*return*/]; } }); }); }); it('broadcasts Tensor1D and scalar', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([0.5, 3, -0.1, -4]); b = tf.scalar(0.6); result = tf.squaredDifference(a, b); expect(result.shape).toEqual(a.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [ Math.pow(0.5 - 0.6, 2), Math.pow(3 - 0.6, 2), Math.pow(-0.1 - 0.6, 2), Math.pow(-4 - 0.6, 2) ]]); return [2 /*return*/]; } }); }); }); it('broadcasts scalar and Tensor1D', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.scalar(0.6); b = tf.tensor1d([0.5, 3, -0.1, -4]); result = tf.squaredDifference(a, b); expect(result.shape).toEqual(b.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [ Math.pow(0.6 - 0.5, 2), Math.pow(0.6 - 3, 2), Math.pow(0.6 - (-0.1), 2), Math.pow(0.6 - (-4), 2) ]]); return [2 /*return*/]; } }); }); }); it('broadcasts Tensor1D and Tensor2D', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([0.5, 0.3]); b = tf.tensor2d([0.2, 0.4, 0.6, 0.15], [2, 2]); result = tf.squaredDifference(a, b); expect(result.shape).toEqual(b.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [ Math.pow(0.5 - 0.2, 2), Math.pow(0.3 - 0.4, 2), Math.pow(0.5 - 0.6, 2), Math.pow(0.3 - 0.15, 2) ]]); return [2 /*return*/]; } }); }); }); it('broadcasts 2x1 Tensor2D and 2x2 Tensor2D', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([0.5, 0.3], [2, 1]); b = tf.tensor2d([0.2, 0.4, 0.6, 0.15], [2, 2]); result = tf.squaredDifference(a, b); expect(result.shape).toEqual(b.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [ Math.pow(0.5 - 0.2, 2), Math.pow(0.5 - 0.4, 2), Math.pow(0.3 - 0.6, 2), Math.pow(0.3 - 0.15, 2) ]]); return [2 /*return*/]; } }); }); }); it('gradients: Scalar', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, dy, grads, _a, da, db, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.scalar(5.2); b = tf.scalar(0.6); dy = tf.scalar(3); grads = tf.grads(function (a, b) { return tf.squaredDifference(a, b); }); _a = grads([a, b], dy), da = _a[0], db = _a[1]; expect(da.shape).toEqual(a.shape); expect(db.shape).toEqual(b.shape); expect(da.dtype).toEqual('float32'); expect(db.dtype).toEqual('float32'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _b.apply(void 0, [_d.sent(), [3 * 2 * (5.2 - 0.6)]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, db.data()]; case 2: _c.apply(void 0, [_d.sent(), [3 * 2 * (0.6 - 5.2)]]); return [2 /*return*/]; } }); }); }); it('gradient with clones', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, dy, grads, _a, da, db, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.scalar(5.2); b = tf.scalar(0.6); dy = tf.scalar(3); grads = tf.grads(function (a, b) { return tf.squaredDifference(a.clone(), b.clone()).clone(); }); _a = grads([a, b], dy), da = _a[0], db = _a[1]; expect(da.shape).toEqual(a.shape); expect(db.shape).toEqual(b.shape); expect(da.dtype).toEqual('float32'); expect(db.dtype).toEqual('float32'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _b.apply(void 0, [_d.sent(), [3 * 2 * (5.2 - 0.6)]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, db.data()]; case 2: _c.apply(void 0, [_d.sent(), [3 * 2 * (0.6 - 5.2)]]); return [2 /*return*/]; } }); }); }); it('gradients: Tensor1D', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, dy, grads, _a, da, db, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.tensor1d([1.1, 2.6, 3, 5.9]); b = tf.tensor1d([1.0, 2.7, 3, 5.8]); dy = tf.tensor1d([1, 2, 3, 1]); grads = tf.grads(function (a, b) { return tf.squaredDifference(a, b); }); _a = grads([a, b], dy), da = _a[0], db = _a[1]; expect(da.shape).toEqual(a.shape); expect(db.shape).toEqual(b.shape); expect(da.dtype).toEqual('float32'); expect(db.dtype).toEqual('float32'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _b.apply(void 0, [_d.sent(), [ 1 * 2 * (1.1 - 1.0), 2 * 2 * (2.6 - 2.7), 3 * 2 * (3 - 3), 1 * 2 * (5.9 - 5.8) ]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, db.data()]; case 2: _c.apply(void 0, [_d.sent(), [ 1 * 2 * (1.0 - 1.1), 2 * 2 * (2.7 - 2.6), 3 * 2 * (3 - 3), 1 * 2 * (5.8 - 5.9) ]]); return [2 /*return*/]; } }); }); }); it('gradients: Tensor2D', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, dy, grads, _a, da, db, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.tensor2d([0.5, 0.3, 0.7, 0.9], [2, 2]); b = tf.tensor2d([0.2, 0.4, 0.7, 0.15], [2, 2]); dy = tf.tensor2d([1, 2, 3, 4], [2, 2]); grads = tf.grads(function (a, b) { return tf.squaredDifference(a, b); }); _a = grads([a, b], dy), da = _a[0], db = _a[1]; expect(da.shape).toEqual(a.shape); expect(db.shape).toEqual(b.shape); expect(da.dtype).toEqual('float32'); expect(db.dtype).toEqual('float32'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _b.apply(void 0, [_d.sent(), [ 1 * 2 * (0.5 - 0.2), 2 * 2 * (0.3 - 0.4), 3 * 2 * (0.7 - 0.7), 4 * 2 * (0.9 - 0.15) ]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, db.data()]; case 2: _c.apply(void 0, [_d.sent(), [ 1 * 2 * (0.2 - 0.5), 2 * 2 * (0.4 - 0.3), 3 * 2 * (0.7 - 0.7), 4 * 2 * (0.15 - 0.9) ]]); return [2 /*return*/]; } }); }); }); it('throws when passed a as a non-tensor', function () { expect(function () { return tf.squaredDifference({}, tf.scalar(1)); }) .toThrowError(/Argument 'a' passed to 'squaredDifference' must be a Tensor/); }); it('throws when passed b as a non-tensor', function () { expect(function () { return tf.squaredDifference(tf.scalar(1), {}); }) .toThrowError(/Argument 'b' passed to 'squaredDifference' must be a Tensor/); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = [[0.5, 3], [-0.1, -4]]; b = 0.6; result = tf.squaredDifference(a, b); expect(result.shape).toEqual([2, 2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [ Math.pow(0.5 - 0.6, 2), Math.pow(3 - 0.6, 2), Math.pow(-0.1 - 0.6, 2), Math.pow(-4 - 0.6, 2) ]]); return [2 /*return*/]; } }); }); }); it('throws for string tensor', function () { expect(function () { return tf.squaredDifference('q', 3); }) .toThrowError(/Argument 'a' passed to 'squaredDifference' must be numeric/); expect(function () { return tf.squaredDifference(3, 'q'); }) .toThrowError(/Argument 'b' passed to 'squaredDifference' must be numeric/); }); }); jasmine_util_1.describeWithFlags('minimum', jasmine_util_1.ALL_ENVS, function () { it('float32 and float32', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([0.5, 3, -0.1, -4]); b = tf.tensor1d([0.2, 0.4, 0.25, 0.15]); result = tf.minimum(a, b); expect(result.shape).toEqual(a.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [0.2, 0.4, -0.1, -4]]); return [2 /*return*/]; } }); }); }); it('TensorLike', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = [0.5, 3, -0.1, -4]; b = [0.2, 0.4, 0.25, 0.15]; result = tf.minimum(a, b); expect(result.shape).toEqual([4]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [0.2, 0.4, -0.1, -4]]); return [2 /*return*/]; } }); }); }); it('TensorLike chained', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([0.5, 3, -0.1, -4]); b = [0.2, 0.4, 0.25, 0.15]; result = a.minimum(b); expect(result.shape).toEqual(a.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [0.2, 0.4, -0.1, -4]]); return [2 /*return*/]; } }); }); }); it('int32 and int32', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([1, 5, 2, 3], 'int32'); b = tf.tensor1d([2, 3, 1, 4], 'int32'); result = tf.minimum(a, b); expect(result.shape).toEqual(a.shape); expect(result.dtype).toBe('int32'); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 3, 1, 3]]); return [2 /*return*/]; } }); }); }); it('bool and bool', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([true, false, false, true], 'bool'); b = tf.tensor1d([false, false, true, true], 'bool'); result = tf.minimum(a, b); expect(result.shape).toEqual(a.shape); expect(result.dtype).toBe('int32'); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, 0, 0, 1]]); return [2 /*return*/]; } }); }); }); it('upcasts when dtypes dont match', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([1, 0, 0, 1], 'float32'); b = tf.tensor1d([0, 0, 1, 1], 'int32'); res = tf.minimum(a, b); expect(res.shape).toEqual(a.shape); expect(res.dtype).toBe('float32'); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, 0, 0, 1]]); return [2 /*return*/]; } }); }); }); it('propagates NaN', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([0.5, -0.1, NaN]); b = tf.tensor1d([0.2, 0.3, 0.25]); result = tf.minimum(a, b); expect(result.shape).toEqual(a.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [0.2, -0.1, NaN]]); return [2 /*return*/]; } }); }); }); it('broadcasts Tensor1D and scalar', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([0.5, 3, -0.1, -4]); b = tf.scalar(0.6); result = tf.minimum(a, b); expect(result.shape).toEqual(a.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [0.5, 0.6, -0.1, -4]]); return [2 /*return*/]; } }); }); }); it('broadcasts scalar and Tensor1D', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.scalar(0.6); b = tf.tensor1d([0.5, 3, -0.1, -4]); result = tf.minimum(a, b); expect(result.shape).toEqual(b.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [0.5, 0.6, -0.1, -4]]); return [2 /*return*/]; } }); }); }); it('broadcasts Tensor1D and Tensor2D', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([0.5, 0.3]); b = tf.tensor2d([0.2, 0.4, 0.6, 0.15], [2, 2]); result = tf.minimum(a, b); expect(result.shape).toEqual(b.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [0.2, 0.3, 0.5, 0.15]]); return [2 /*return*/]; } }); }); }); it('broadcasts 2x1 Tensor2D and 2x2 Tensor2D', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([0.5, 0.3], [2, 1]); b = tf.tensor2d([0.2, 0.4, 0.6, 0.15], [2, 2]); result = tf.minimum(a, b); expect(result.shape).toEqual(b.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [0.2, 0.4, 0.3, 0.15]]); return [2 /*return*/]; } }); }); }); it('gradients: Scalar', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, dy, grads, _a, da, db, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.scalar(5.2); b = tf.scalar(0.6); dy = tf.scalar(3); grads = tf.grads(function (a, b) { return tf.minimum(a, b); }); _a = grads([a, b], dy), da = _a[0], db = _a[1]; expect(da.shape).toEqual(a.shape); expect(db.shape).toEqual(b.shape); expect(da.dtype).toEqual('float32'); expect(db.dtype).toEqual('float32'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _b.apply(void 0, [_d.sent(), [3 * 0]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, db.data()]; case 2: _c.apply(void 0, [_d.sent(), [3 * 1]]); return [2 /*return*/]; } }); }); }); it('gradient with clones', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, dy, grads, _a, da, db, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.scalar(5.2); b = tf.scalar(0.6); dy = tf.scalar(3); grads = tf.grads(function (a, b) { return tf.minimum(a.clone(), b.clone()).clone(); }); _a = grads([a, b], dy), da = _a[0], db = _a[1]; expect(da.shape).toEqual(a.shape); expect(db.shape).toEqual(b.shape); expect(da.dtype).toEqual('float32'); expect(db.dtype).toEqual('float32'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _b.apply(void 0, [_d.sent(), [3 * 0]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, db.data()]; case 2: _c.apply(void 0, [_d.sent(), [3 * 1]]); return [2 /*return*/]; } }); }); }); it('gradients: Tensor1D', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, dy, grads, _a, da, db, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.tensor1d([1.1, 2.6, 3, 5.9]); b = tf.tensor1d([1.0, 2.7, 3, 5.8]); dy = tf.tensor1d([1, 2, 3, 4]); grads = tf.grads(function (a, b) { return tf.minimum(a, b); }); _a = grads([a, b], dy), da = _a[0], db = _a[1]; expect(da.shape).toEqual(a.shape); expect(db.shape).toEqual(b.shape); expect(da.dtype).toEqual('float32'); expect(db.dtype).toEqual('float32'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _b.apply(void 0, [_d.sent(), [1 * 0, 2 * 1, 3 * 1, 4 * 0]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, db.data()]; case 2: _c.apply(void 0, [_d.sent(), [1 * 1, 2 * 0, 3 * 0, 4 * 1]]); return [2 /*return*/]; } }); }); }); it('gradients: Tensor2D', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, dy, grads, _a, da, db, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.tensor2d([0.5, 0.3, 0.7, 0.9], [2, 2]); b = tf.tensor2d([0.2, 0.4, 0.7, 0.15], [2, 2]); dy = tf.tensor2d([1, 2, 3, 4], [2, 2]); grads = tf.grads(function (a, b) { return tf.minimum(a, b); }); _a = grads([a, b], dy), da = _a[0], db = _a[1]; expect(da.shape).toEqual(a.shape); expect(db.shape).toEqual(b.shape); expect(da.dtype).toEqual('float32'); expect(db.dtype).toEqual('float32'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _b.apply(void 0, [_d.sent(), [1 * 0, 2 * 1, 3 * 1, 4 * 0]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, db.data()]; case 2: _c.apply(void 0, [_d.sent(), [1 * 1, 2 * 0, 3 * 0, 4 * 1]]); return [2 /*return*/]; } }); }); }); it('throws when passed a as a non-tensor', function () { expect(function () { return tf.minimum({}, tf.scalar(1)); }) .toThrowError(/Argument 'a' passed to 'minimum' must be a Tensor/); }); it('throws when passed b as a non-tensor', function () { expect(function () { return tf.minimum(tf.scalar(1), {}); }) .toThrowError(/Argument 'b' passed to 'minimum' must be a Tensor/); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = [[0.5, 3], [-0.1, -4]]; b = [[0.2, 0.4], [0.25, 0.15]]; result = tf.minimum(a, b); expect(result.shape).toEqual([2, 2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [0.2, 0.4, -0.1, -4]]); return [2 /*return*/]; } }); }); }); it('throws for string tensor', function () { expect(function () { return tf.minimum('q', 3); }) .toThrowError(/Argument 'a' passed to 'minimum' must be numeric/); expect(function () { return tf.minimum(3, 'q'); }) .toThrowError(/Argument 'b' passed to 'minimum' must be numeric/); }); }); jasmine_util_1.describeWithFlags('mod', jasmine_util_1.ALL_ENVS, function () { it('float32 and float32', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([0.5, 3, -0.1, -4]); b = tf.tensor1d([0.2, 0.4, 0.25, 0.15]); result = tf.mod(a, b); expect(result.shape).toEqual(a.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [0.1, 0.2, 0.15, 0.05]]); return [2 /*return*/]; } }); }); }); it('TensorLike', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = [0.5, 3, -0.1, -4]; b = [0.2, 0.4, 0.25, 0.15]; result = tf.mod(a, b); expect(result.shape).toEqual([4]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [0.1, 0.2, 0.15, 0.05]]); return [2 /*return*/]; } }); }); }); it('TensorLike chained', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([0.5, 3, -0.1, -4]); b = [0.2, 0.4, 0.25, 0.15]; result = a.mod(b); expect(result.shape).toEqual(a.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [0.1, 0.2, 0.15, 0.05]]); return [2 /*return*/]; } }); }); }); it('int32 and int32', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([1, 5, 2, 3], 'int32'); b = tf.tensor1d([2, 3, 1, 4], 'int32'); result = tf.mod(a, b); expect(result.shape).toEqual(a.shape); expect(result.dtype).toBe('int32'); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 2, 0, 3]]); return [2 /*return*/]; } }); }); }); it('upcasts when dtypes dont match', function () { return __awaiter(_this, void 0, void 0, function () { var res, _a, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: res = tf.mod(tf.scalar(5, 'int32'), tf.scalar(2, 'float32')); expect(res.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_c.sent(), [1]]); res = tf.mod(tf.scalar(5, 'int32'), tf.scalar(true, 'bool')); expect(res.dtype).toBe('int32'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 2: _b.apply(void 0, [_c.sent(), [0]]); return [2 /*return*/]; } }); }); }); it('propagates NaN', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([5, -1, NaN]); b = tf.tensor1d([2, 3, 0.25]); result = tf.mod(a, b); expect(result.shape).toEqual(a.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 2, NaN]]); return [2 /*return*/]; } }); }); }); it('broadcasts Tensor1D and scalar', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([0.5, 2.5, -0.1, -4], 'float32'); b = tf.scalar(0.6); result = tf.mod(a, b); expect(result.shape).toEqual(a.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [0.5, 0.1, 0.5, 0.2]]); return [2 /*return*/]; } }); }); }); it('broadcasts scalar and Tensor1D', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.scalar(2); b = tf.tensor1d([3, 3, -1, -4]); result = tf.mod(a, b); expect(result.shape).toEqual(b.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [2, 2, 0, -2]]); return [2 /*return*/]; } }); }); }); it('broadcasts Tensor1D and Tensor2D', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([0.5, 0.3]); b = tf.tensor2d([0.2, 0.4, 0.6, 0.15], [2, 2]); result = tf.mod(a, b); expect(result.shape).toEqual(b.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [0.1, 0.3, 0.5, 0.0]]); return [2 /*return*/]; } }); }); }); it('broadcasts 2x1 Tensor2D and 2x2 Tensor2D', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([0.5, 0.3], [2, 1]); b = tf.tensor2d([0.2, 0.4, 0.6, 0.15], [2, 2]); result = tf.mod(a, b); expect(result.shape).toEqual(b.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [0.1, 0.1, 0.3, 0.0]]); return [2 /*return*/]; } }); }); }); it('gradients: Scalar', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, dy, grads, _a, da, db, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.scalar(5.2); b = tf.scalar(0.6); dy = tf.scalar(3); grads = tf.grads(function (a, b) { return tf.mod(a, b); }); _a = grads([a, b], dy), da = _a[0], db = _a[1]; expect(da.shape).toEqual(a.shape); expect(db.shape).toEqual(b.shape); expect(da.dtype).toEqual('float32'); expect(db.dtype).toEqual('float32'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _b.apply(void 0, [_d.sent(), [3]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, db.data()]; case 2: _c.apply(void 0, [_d.sent(), [3 * -1 * Math.floor(5.2 / 0.6)]]); return [2 /*return*/]; } }); }); }); it('gradient with clones', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, dy, grads, _a, da, db, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.scalar(5.2); b = tf.scalar(0.6); dy = tf.scalar(3); grads = tf.grads(function (a, b) { return tf.mod(a.clone(), b.clone()).clone(); }); _a = grads([a, b], dy), da = _a[0], db = _a[1]; expect(da.shape).toEqual(a.shape); expect(db.shape).toEqual(b.shape); expect(da.dtype).toEqual('float32'); expect(db.dtype).toEqual('float32'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _b.apply(void 0, [_d.sent(), [3]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, db.data()]; case 2: _c.apply(void 0, [_d.sent(), [3 * -1 * Math.floor(5.2 / 0.6)]]); return [2 /*return*/]; } }); }); }); it('gradients: Tensor1D', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, dy, grads, _a, da, db, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.tensor1d([1.1, 2.6, 3, 5.9]); b = tf.tensor1d([1.0, 2.7, 3, 5.8]); dy = tf.tensor1d([1, 2, 3, 4]); grads = tf.grads(function (a, b) { return tf.mod(a, b); }); _a = grads([a, b], dy), da = _a[0], db = _a[1]; expect(da.shape).toEqual(a.shape); expect(db.shape).toEqual(b.shape); expect(da.dtype).toEqual('float32'); expect(db.dtype).toEqual('float32'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _b.apply(void 0, [_d.sent(), [1 * 1, 2 * 1, 3 * 1, 4 * 1]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, db.data()]; case 2: _c.apply(void 0, [_d.sent(), [ 1 * -1 * Math.floor(1.1 / 1.0), 2 * -1 * Math.floor(2.6 / 2.7), 3 * -1 * Math.floor(3 / 3), 4 * -1 * Math.floor(5.9 / 5.8) ]]); return [2 /*return*/]; } }); }); }); it('gradients: Tensor2D', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, dy, grads, _a, da, db, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.tensor2d([0.5, 0.3, 0.7, 0.91], [2, 2]); b = tf.tensor2d([0.2, 0.4, 0.7, 0.15], [2, 2]); dy = tf.tensor2d([1, 2, 3, 4], [2, 2]); grads = tf.grads(function (a, b) { return tf.mod(a, b); }); _a = grads([a, b], dy), da = _a[0], db = _a[1]; expect(da.shape).toEqual(a.shape); expect(db.shape).toEqual(b.shape); expect(da.dtype).toEqual('float32'); expect(db.dtype).toEqual('float32'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _b.apply(void 0, [_d.sent(), [1 * 1, 2 * 1, 3 * 1, 4 * 1]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, db.data()]; case 2: _c.apply(void 0, [_d.sent(), [ 1 * -1 * Math.floor(0.5 / 0.2), 2 * -1 * Math.floor(0.3 / 0.4), 3 * -1 * Math.floor(0.7 / 0.7), 4 * -1 * Math.floor(0.91 / 0.15) ]]); return [2 /*return*/]; } }); }); }); it('gradients: broadcasts scalar and Tensor1D', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, dy, grads, _a, da, db, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.scalar(0.7); b = tf.tensor1d([0.2, 0.3, 0.4, 0.5]); dy = tf.tensor1d([1, 2, 3, 4]); grads = tf.grads(function (a, b) { return tf.mod(a, b); }); _a = grads([a, b], dy), da = _a[0], db = _a[1]; expect(da.shape).toEqual(a.shape); expect(db.shape).toEqual(b.shape); expect(da.dtype).toEqual('float32'); expect(db.dtype).toEqual('float32'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _b.apply(void 0, [_d.sent(), [1 + 2 + 3 + 4]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, db.data()]; case 2: _c.apply(void 0, [_d.sent(), [ 1 * -1 * Math.floor(0.7 / 0.2), 2 * -1 * Math.floor(0.7 / 0.3), 3 * -1 * Math.floor(0.7 / 0.4), 4 * -1 * Math.floor(0.7 / 0.5) ]]); return [2 /*return*/]; } }); }); }); it('broadcasts Tensor1D and Tensor2D', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, dy, grads, _a, da, db, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.tensor1d([0.5, 0.3]); b = tf.tensor2d([0.2, 0.4, 0.7, 0.15], [2, 2]); dy = tf.tensor2d([1, 2, 3, 4], [2, 2]); grads = tf.grads(function (a, b) { return tf.mod(a, b); }); _a = grads([a, b], dy), da = _a[0], db = _a[1]; expect(da.shape).toEqual(a.shape); expect(db.shape).toEqual(b.shape); expect(da.dtype).toEqual('float32'); expect(db.dtype).toEqual('float32'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _b.apply(void 0, [_d.sent(), [1 * 1 + 3 * 1, 2 * 1 + 4 * 1]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, db.data()]; case 2: _c.apply(void 0, [_d.sent(), [ 1 * -1 * Math.floor(0.5 / 0.2), 2 * -1 * Math.floor(0.3 / 0.4), 3 * -1 * Math.floor(0.5 / 0.7), 4 * -1 * Math.floor(0.3 / 0.15) ]]); return [2 /*return*/]; } }); }); }); it('throws when passed a as a non-tensor', function () { expect(function () { return tf.mod({}, tf.scalar(1)); }) .toThrowError(/Argument 'a' passed to 'mod' must be a Tensor/); }); it('throws when passed b as a non-tensor', function () { expect(function () { return tf.mod(tf.scalar(1), {}); }) .toThrowError(/Argument 'b' passed to 'mod' must be a Tensor/); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = [[0.5, 3], [-0.1, -4]]; b = [[0.2, 0.4], [0.25, 0.15]]; result = tf.mod(a, b); expect(result.shape).toEqual([2, 2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [0.1, 0.2, 0.15, 0.05]]); return [2 /*return*/]; } }); }); }); it('throws for string tensor', function () { expect(function () { return tf.mod('q', 3); }) .toThrowError(/Argument 'a' passed to 'mod' must be numeric/); expect(function () { return tf.mod(3, 'q'); }) .toThrowError(/Argument 'b' passed to 'mod' must be numeric/); }); }); jasmine_util_1.describeWithFlags('atan2', jasmine_util_1.ALL_ENVS, function () { it('same shape', function () { return __awaiter(_this, void 0, void 0, function () { var aValues, bValues, a, c, r, expected, i, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: aValues = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]; bValues = [1.0, 2.5, 3.5, 4.5, 2.0, 5.0]; a = tf.tensor2d(aValues, [2, 3]); c = tf.tensor2d(bValues, [2, 3]); r = tf.atan2(a, c); expected = []; for (i = 0; i < a.size; i++) { expected[i] = Math.atan2(aValues[i], bValues[i]); } _a = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('uses chaining', function () { return __awaiter(_this, void 0, void 0, function () { var aValues, bValues, a, b, r, expected, i, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: aValues = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]; bValues = [1.0, 2.5, 3.5, 4.5, 2.0, 5.0]; a = tf.tensor2d(aValues, [2, 3]); b = tf.tensor2d(bValues, [2, 3]); r = a.atan2(b); expected = []; for (i = 0; i < a.size; i++) { expected[i] = Math.atan2(aValues[i], bValues[i]); } _a = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('propagates NaNs', function () { return __awaiter(_this, void 0, void 0, function () { var a, c, r, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor2d([1.0, 2.0], [2, 1]); c = tf.tensor2d([3.0, NaN], [2, 1]); r = tf.atan2(a, c); _a = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), [Math.atan2(1.0, 3.0), NaN]]); return [2 /*return*/]; } }); }); }); it('broadcasting same rank Tensors different shape', function () { return __awaiter(_this, void 0, void 0, function () { var aValues, bValues, a, b, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: aValues = [1.0, 2.0, -3.0, -4.0]; bValues = [2.0, 3.0]; a = tf.tensor2d(aValues, [2, 2]); b = tf.tensor2d(bValues, [2, 1]); result = tf.atan2(a, b); expect(result.shape).toEqual([2, 2]); expected = [ Math.atan2(1.0, 2.0), Math.atan2(2.0, 2.0), Math.atan2(-3.0, 3.0), Math.atan2(-4.0, 3.0) ]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('throws when passed tensors of different shapes', function () { var a = tf.tensor2d([1, 2, -3, -4, 5, 6], [2, 3]); var b = tf.tensor2d([5, 3, 4, -7], [2, 2]); expect(function () { return tf.atan2(a, b); }).toThrowError(); expect(function () { return tf.atan2(b, a); }).toThrowError(); }); it('upcasts when dtypes dont match', function () { return __awaiter(_this, void 0, void 0, function () { var aValues, bValues, a, c, r, expected, i, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: aValues = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]; bValues = [1, 2, 3, 4, 2, 5]; a = tf.tensor2d(aValues, [2, 3], 'float32'); c = tf.tensor2d(bValues, [2, 3], 'int32'); r = tf.atan2(a, c); expected = []; for (i = 0; i < a.size; i++) { expected[i] = Math.atan2(aValues[i], bValues[i]); } expect(r.shape).toEqual([2, 3]); expect(r.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('atan2 of scalar and array propagates NaNs', function () { return __awaiter(_this, void 0, void 0, function () { var c, a, r, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: c = tf.scalar(NaN); a = tf.tensor2d([1, 2, 3], [1, 3]); r = tf.atan2(c, a); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), [NaN, NaN, NaN]]); return [2 /*return*/]; } }); }); }); it('atan2 of scalar and array', function () { return __awaiter(_this, void 0, void 0, function () { var aValues, a, c, r, expected, i, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: aValues = [1, 2, 3, 4, 5, 6]; a = tf.tensor2d(aValues, [2, 3]); c = tf.scalar(2); r = tf.atan2(a, c); expected = []; for (i = 0; i < a.size; i++) { expected[i] = Math.atan2(aValues[i], 2); } _a = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('gradient: Scalar', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, dy, grads, _a, da, db, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.scalar(5); b = tf.scalar(2); dy = tf.scalar(4); grads = tf.grads(function (a, b) { return tf.atan2(a, b); }); _a = grads([a, b], dy), da = _a[0], db = _a[1]; expect(da.shape).toEqual(a.shape); expect(da.dtype).toEqual('float32'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _b.apply(void 0, [_d.sent(), [4 * 2 / 29]]); expect(db.shape).toEqual(b.shape); expect(db.dtype).toEqual('float32'); _c = test_util_1.expectArraysClose; return [4 /*yield*/, db.data()]; case 2: _c.apply(void 0, [_d.sent(), [4 * -5 / 29]]); return [2 /*return*/]; } }); }); }); it('gradient with clones', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, dy, grads, _a, da, db, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.scalar(5); b = tf.scalar(2); dy = tf.scalar(4); grads = tf.grads(function (a, b) { return tf.atan2(a.clone(), b.clone()).clone(); }); _a = grads([a, b], dy), da = _a[0], db = _a[1]; expect(da.shape).toEqual(a.shape); expect(da.dtype).toEqual('float32'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _b.apply(void 0, [_d.sent(), [4 * 2 / 29]]); expect(db.shape).toEqual(b.shape); expect(db.dtype).toEqual('float32'); _c = test_util_1.expectArraysClose; return [4 /*yield*/, db.data()]; case 2: _c.apply(void 0, [_d.sent(), [4 * -5 / 29]]); return [2 /*return*/]; } }); }); }); it('gradient: Tensor1D', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, dy, grads, _a, da, db, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.tensor1d([1, 2, 3]); b = tf.tensor1d([3, 4, 5]); dy = tf.tensor1d([1, 10, 20]); grads = tf.grads(function (a, b) { return tf.atan2(a, b); }); _a = grads([a, b], dy), da = _a[0], db = _a[1]; expect(da.shape).toEqual(a.shape); expect(db.dtype).toEqual('float32'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _b.apply(void 0, [_d.sent(), [1 * 3 / 10, 10 * 4 / 20, 20 * 5 / 34]]); expect(db.shape).toEqual(b.shape); expect(db.dtype).toEqual('float32'); _c = test_util_1.expectArraysClose; return [4 /*yield*/, db.data()]; case 2: _c.apply(void 0, [_d.sent(), [-1 * 1 / 10, -10 * 2 / 20, -20 * 3 / 34]]); return [2 /*return*/]; } }); }); }); it('gradient: Tensor2D', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, dy, grads, _a, da, db, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.tensor2d([3, 1, 2, 3], [2, 2]); b = tf.tensor2d([1, 3, 4, 5], [2, 2]); dy = tf.tensor2d([1, 10, 15, 20], [2, 2]); grads = tf.grads(function (a, b) { return tf.atan2(a, b); }); _a = grads([a, b], dy), da = _a[0], db = _a[1]; expect(da.shape).toEqual(a.shape); expect(da.dtype).toEqual('float32'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _b.apply(void 0, [_d.sent(), [1 * 1 / 10, 10 * 3 / 10, 15 * 4 / 20, 20 * 5 / 34]]); expect(db.shape).toEqual(b.shape); expect(db.dtype).toEqual('float32'); _c = test_util_1.expectArraysClose; return [4 /*yield*/, db.data()]; case 2: _c.apply(void 0, [_d.sent(), [-1 * 3 / 10, -10 * 1 / 10, -15 * 2 / 20, -20 * 3 / 34]]); return [2 /*return*/]; } }); }); }); it('gradient: scalar / Tensor1D', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, dy, grads, _a, da, db, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.scalar(2); b = tf.tensor1d([3, 4, 5]); dy = tf.tensor1d([6, 7, 8]); grads = tf.grads(function (a, b) { return tf.atan2(a, b); }); _a = grads([a, b], dy), da = _a[0], db = _a[1]; expect(da.shape).toEqual(a.shape); expect(da.dtype).toEqual('float32'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _b.apply(void 0, [_d.sent(), [6 * 3 / 13 + 7 * 4 / 20 + 8 * 5 / 29]]); expect(db.shape).toEqual(b.shape); expect(db.dtype).toEqual('float32'); _c = test_util_1.expectArraysClose; return [4 /*yield*/, db.data()]; case 2: _c.apply(void 0, [_d.sent(), [-6 * 2 / 13, -7 * 2 / 20, -8 * 2 / 29]]); return [2 /*return*/]; } }); }); }); it('gradient: Tensor2D / scalar', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, dy, grads, _a, da, db, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.tensor2d([[2, 3], [4, 5]], [2, 2]); b = tf.scalar(2); dy = tf.tensor2d([[6, 7], [8, 9]], [2, 2]); grads = tf.grads(function (a, b) { return tf.atan2(a, b); }); _a = grads([a, b], dy), da = _a[0], db = _a[1]; expect(da.shape).toEqual(a.shape); expect(da.dtype).toEqual('float32'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _b.apply(void 0, [_d.sent(), [6 * 2 / 8, 7 * 2 / 13, 8 * 2 / 20, 9 * 2 / 29]]); expect(db.shape).toEqual(b.shape); expect(db.dtype).toEqual('float32'); _c = test_util_1.expectArraysClose; return [4 /*yield*/, db.data()]; case 2: _c.apply(void 0, [_d.sent(), [-6 * 2 / 8 + -7 * 3 / 13 + -8 * 4 / 20 + -9 * 5 / 29]]); return [2 /*return*/]; } }); }); }); it('gradient: Tensor2D / Tensor2D w/ broadcast', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, dy, grads, _a, da, db, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: a = tf.tensor2d([3, 4], [2, 1]); b = tf.tensor2d([[2, 3], [4, 5]], [2, 2]); dy = tf.tensor2d([[6, 7], [8, 9]], [2, 2]); grads = tf.grads(function (a, b) { return tf.atan2(a, b); }); _a = grads([a, b], dy), da = _a[0], db = _a[1]; expect(da.shape).toEqual(a.shape); expect(da.dtype).toEqual('float32'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, da.data()]; case 1: _b.apply(void 0, [_d.sent(), [6 * 2 / 13 + 7 * 3 / 18, 8 * 4 / 32 + 9 * 5 / 41]]); expect(db.shape).toEqual(b.shape); expect(db.dtype).toEqual('float32'); _c = test_util_1.expectArraysClose; return [4 /*yield*/, db.data()]; case 2: _c.apply(void 0, [_d.sent(), [-6 * 3 / 13, -7 * 3 / 18, -8 * 4 / 32, -9 * 4 / 41]]); return [2 /*return*/]; } }); }); }); it('throws when passed a as a non-tensor', function () { expect(function () { return tf.atan2({}, tf.scalar(1)); }) .toThrowError(/Argument 'a' passed to 'atan2' must be a Tensor/); }); it('throws when passed b as a non-tensor', function () { expect(function () { return tf.atan2(tf.scalar(1), {}); }) .toThrowError(/Argument 'b' passed to 'atan2' must be a Tensor/); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var a, c, r, expected, i, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = [[1, 2, 3], [4, 5, 6]]; c = 2; r = tf.atan2(a, c); expected = []; for (i = 0; i < 6; i++) { expected[i] = Math.atan2(i + 1, 2); } _a = test_util_1.expectArraysClose; return [4 /*yield*/, r.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('throws for string tensor', function () { expect(function () { return tf.atan2('q', 3); }) .toThrowError(/Argument 'a' passed to 'atan2' must be numeric/); expect(function () { return tf.atan2(3, 'q'); }) .toThrowError(/Argument 'b' passed to 'atan2' must be numeric/); }); }); jasmine_util_1.describeWithFlags('div', jasmine_util_1.ALL_ENVS, function () { it('divNoNan divide 0', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, c, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([2, 4, 6, 8]); b = tf.tensor1d([0, 0, 0, 0]); c = a.divNoNan(b); expect(c.shape).toEqual(a.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, c.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, 0, 0, 0]]); return [2 /*return*/]; } }); }); }); it('divNoNan divide 0 and non-0', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, c, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([2, 4, 6, 8]); b = tf.tensor1d([2, 2, 0, 4]); c = a.divNoNan(b); expect(c.shape).toEqual(a.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, c.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 2, 0, 2]]); return [2 /*return*/]; } }); }); }); it('divNoNan divide 0 broadcast', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, c, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([2, 4, 6, 8]); b = tf.scalar(0); c = a.divNoNan(b); expect(c.shape).toEqual(a.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, c.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, 0, 0, 0]]); return [2 /*return*/]; } }); }); }); }); //# sourceMappingURL=binary_ops_test.js.map