"use strict"; /** * @license * Copyright 2018 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; Object.defineProperty(exports, "__esModule", { value: true }); var tensor_util_env_1 = require("../tensor_util_env"); var util = require("../util"); var logical_ops_1 = require("./logical_ops"); var segment_ops_1 = require("./segment_ops"); /** * Apply boolean mask to tensor. * * ```js * const tensor = tf.tensor2d([1, 2, 3, 4, 5, 6], [3, 2]); * const mask = tf.tensor1d([1, 0, 1], 'bool'); * const result = await tf.booleanMaskAsync(tensor, mask); * result.print(); * ``` * * @param tensor N-D tensor. * @param mask K-D boolean tensor, K <= N and K must be known statically. * @param axis A 0-D int Tensor representing the axis in tensor to mask from. * By default, axis is 0 which will mask from the first dimension. * Otherwise K + axis <= N. */ /** @doc {heading: 'Tensors', subheading: 'Slicing and Joining'} */ function booleanMaskAsync_(tensor, mask, axis) { return __awaiter(this, void 0, void 0, function () { var $tensor, $mask, axisFrom, maskDim, tensorShape, leadingSize, i, targetTensorShape, reshapedTensor, reshapedMask, positivePositions, indices, res; return __generator(this, function (_a) { switch (_a.label) { case 0: $tensor = tensor_util_env_1.convertToTensor(tensor, 'tensor', 'boolMask'); $mask = tensor_util_env_1.convertToTensor(mask, 'mask', 'boolMask', 'bool'); axisFrom = axis == null ? 0 : axis; maskDim = $mask.rank; tensorShape = $tensor.shape; util.assert(maskDim > 0, function () { return 'mask cannot be scalar'; }); util.assertShapesMatch(tensorShape.slice(axisFrom, axisFrom + maskDim), $mask.shape, "mask's shape must match the first K dimensions of tensor's shape,"); leadingSize = 1; for (i = axisFrom; i < axisFrom + maskDim; i++) { leadingSize *= tensorShape[i]; } targetTensorShape = tensorShape.slice(0, axisFrom) .concat([leadingSize], tensorShape.slice(axisFrom + maskDim)); reshapedTensor = $tensor.reshape(targetTensorShape); reshapedMask = $mask.reshape([-1]); return [4 /*yield*/, logical_ops_1.whereAsync(reshapedMask)]; case 1: positivePositions = _a.sent(); indices = positivePositions.squeeze([1]); res = segment_ops_1.gather(reshapedTensor, indices, axisFrom); // Ensure no memory leak. if (tensor !== $tensor) { $tensor.dispose(); } if (mask !== $mask) { $mask.dispose(); } indices.dispose(); reshapedTensor.dispose(); reshapedMask.dispose(); positivePositions.dispose(); return [2 /*return*/, res]; } }); }); } exports.booleanMaskAsync = booleanMaskAsync_; //# sourceMappingURL=boolean_mask.js.map