"use strict"; /** * @license * Copyright 2018 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var _this = this; Object.defineProperty(exports, "__esModule", { value: true }); var tf = require("../index"); var jasmine_util_1 = require("../jasmine_util"); var test_util_1 = require("../test_util"); jasmine_util_1.describeWithFlags('booleanMaskAsync', jasmine_util_1.ALL_ENVS, function () { it('1d array, 1d mask, default axis', function () { return __awaiter(_this, void 0, void 0, function () { var array, mask, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: array = tf.tensor1d([1, 2, 3]); mask = tf.tensor1d([1, 0, 1], 'bool'); return [4 /*yield*/, tf.booleanMaskAsync(array, mask)]; case 1: result = _b.sent(); expect(result.shape).toEqual([2]); expect(result.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 2: _a.apply(void 0, [_b.sent(), [1, 3]]); return [2 /*return*/]; } }); }); }); it('2d array, 1d mask, default axis', function () { return __awaiter(_this, void 0, void 0, function () { var array, mask, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: array = tf.tensor2d([1, 2, 3, 4, 5, 6], [3, 2]); mask = tf.tensor1d([1, 0, 1], 'bool'); return [4 /*yield*/, tf.booleanMaskAsync(array, mask)]; case 1: result = _b.sent(); expect(result.shape).toEqual([2, 2]); expect(result.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 2: _a.apply(void 0, [_b.sent(), [1, 2, 5, 6]]); return [2 /*return*/]; } }); }); }); it('2d array, 2d mask, default axis', function () { return __awaiter(_this, void 0, void 0, function () { var array, mask, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: array = tf.tensor2d([1, 2, 3, 4, 5, 6], [3, 2]); mask = tf.tensor2d([1, 0, 1, 0, 1, 0], [3, 2], 'bool'); return [4 /*yield*/, tf.booleanMaskAsync(array, mask)]; case 1: result = _b.sent(); expect(result.shape).toEqual([3]); expect(result.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 2: _a.apply(void 0, [_b.sent(), [1, 3, 5]]); return [2 /*return*/]; } }); }); }); it('2d array, 1d mask, axis=1', function () { return __awaiter(_this, void 0, void 0, function () { var array, mask, axis, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: array = tf.tensor2d([1, 2, 3, 4, 5, 6], [3, 2]); mask = tf.tensor1d([0, 1], 'bool'); axis = 1; return [4 /*yield*/, tf.booleanMaskAsync(array, mask, axis)]; case 1: result = _b.sent(); expect(result.shape).toEqual([3, 1]); expect(result.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 2: _a.apply(void 0, [_b.sent(), [2, 4, 6]]); return [2 /*return*/]; } }); }); }); it('accepts tensor-like object as array or mask', function () { return __awaiter(_this, void 0, void 0, function () { var array, mask, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: array = [[1, 2], [3, 4], [5, 6]]; mask = [1, 0, 1]; return [4 /*yield*/, tf.booleanMaskAsync(array, mask)]; case 1: result = _b.sent(); expect(result.shape).toEqual([2, 2]); expect(result.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 2: _a.apply(void 0, [_b.sent(), [1, 2, 5, 6]]); return [2 /*return*/]; } }); }); }); it('ensure no memory leak', function () { return __awaiter(_this, void 0, void 0, function () { var numTensorsBefore, array, mask, result, _a, numTensorsAfter; return __generator(this, function (_b) { switch (_b.label) { case 0: numTensorsBefore = tf.memory().numTensors; array = tf.tensor1d([1, 2, 3]); mask = tf.tensor1d([1, 0, 1], 'bool'); return [4 /*yield*/, tf.booleanMaskAsync(array, mask)]; case 1: result = _b.sent(); expect(result.shape).toEqual([2]); expect(result.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 2: _a.apply(void 0, [_b.sent(), [1, 3]]); array.dispose(); mask.dispose(); result.dispose(); numTensorsAfter = tf.memory().numTensors; expect(numTensorsAfter).toBe(numTensorsBefore); return [2 /*return*/]; } }); }); }); it('should throw if mask is scalar', function () { return __awaiter(_this, void 0, void 0, function () { var array, mask, errorMessage, error_1; return __generator(this, function (_a) { switch (_a.label) { case 0: array = tf.tensor2d([1, 2, 3, 4, 5, 6], [3, 2]); mask = tf.scalar(1, 'bool'); errorMessage = 'No error thrown.'; _a.label = 1; case 1: _a.trys.push([1, 3, , 4]); return [4 /*yield*/, tf.booleanMaskAsync(array, mask)]; case 2: _a.sent(); return [3 /*break*/, 4]; case 3: error_1 = _a.sent(); errorMessage = error_1.message; return [3 /*break*/, 4]; case 4: expect(errorMessage).toBe('mask cannot be scalar'); return [2 /*return*/]; } }); }); }); it('should throw if array and mask shape miss match', function () { return __awaiter(_this, void 0, void 0, function () { var array, mask, errorMessage, error_2; return __generator(this, function (_a) { switch (_a.label) { case 0: array = tf.tensor2d([1, 2, 3, 4, 5, 6], [3, 2]); mask = tf.tensor2d([1, 0], [1, 2], 'bool'); errorMessage = 'No error thrown.'; _a.label = 1; case 1: _a.trys.push([1, 3, , 4]); return [4 /*yield*/, tf.booleanMaskAsync(array, mask)]; case 2: _a.sent(); return [3 /*break*/, 4]; case 3: error_2 = _a.sent(); errorMessage = error_2.message; return [3 /*break*/, 4]; case 4: expect(errorMessage) .toBe("mask's shape must match the first K " + "dimensions of tensor's shape, Shapes 3,2 and 1,2 must match"); return [2 /*return*/]; } }); }); }); }); //# sourceMappingURL=boolean_mask_test.js.map