"use strict"; var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var _this = this; Object.defineProperty(exports, "__esModule", { value: true }); /** * @license * Copyright 2018 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var tf = require("../index"); var jasmine_util_1 = require("../jasmine_util"); var test_util_1 = require("../test_util"); jasmine_util_1.describeWithFlags('complex64', jasmine_util_1.ALL_ENVS, function () { it('tf.complex', function () { return __awaiter(_this, void 0, void 0, function () { var real, imag, complex, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: real = tf.tensor1d([3, 30]); imag = tf.tensor1d([4, 40]); complex = tf.complex(real, imag); expect(complex.dtype).toBe('complex64'); expect(complex.shape).toEqual(real.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, complex.data()]; case 1: _a.apply(void 0, [_b.sent(), [3, 4, 30, 40]]); return [2 /*return*/]; } }); }); }); it('tf.real', function () { return __awaiter(_this, void 0, void 0, function () { var complex, real, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: complex = tf.complex([3, 30], [4, 40]); real = tf.real(complex); expect(real.dtype).toBe('float32'); expect(real.shape).toEqual([2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, real.data()]; case 1: _a.apply(void 0, [_b.sent(), [3, 30]]); return [2 /*return*/]; } }); }); }); it('tf.imag', function () { return __awaiter(_this, void 0, void 0, function () { var complex, imag, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: complex = tf.complex([3, 30], [4, 40]); imag = tf.imag(complex); expect(imag.dtype).toBe('float32'); expect(imag.shape).toEqual([2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, imag.data()]; case 1: _a.apply(void 0, [_b.sent(), [4, 40]]); return [2 /*return*/]; } }); }); }); it('throws when shapes dont match', function () { var real = tf.tensor1d([3, 30]); var imag = tf.tensor1d([4, 40, 50]); var re = /real and imag shapes, 2 and 3, must match in call to tf.complex\(\)/; expect(function () { return tf.complex(real, imag); }).toThrowError(re); }); }); var BYTES_PER_COMPLEX_ELEMENT = 4 * 2; jasmine_util_1.describeWithFlags('complex64 memory', jasmine_util_1.BROWSER_ENVS, function () { it('usage', function () { return __awaiter(_this, void 0, void 0, function () { var numTensors, numBuffers, startTensors, real1, imag1, complex1, real2, imag2, complex2, result, _a, real, _b, imag, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: numTensors = tf.memory().numTensors; numBuffers = tf.memory().numDataBuffers; startTensors = numTensors; real1 = tf.tensor1d([1]); imag1 = tf.tensor1d([2]); complex1 = tf.complex(real1, imag1); // 5 new Tensors: real1, imag1, complex1, and two internal clones. expect(tf.memory().numTensors).toBe(numTensors + 5); // Only 3 new data buckets are actually created. expect(tf.memory().numDataBuffers).toBe(numBuffers + 3); numTensors = tf.memory().numTensors; numBuffers = tf.memory().numDataBuffers; real2 = tf.tensor1d([3]); imag2 = tf.tensor1d([4]); complex2 = tf.complex(real2, imag2); // 5 new Tensors: real1, imag1, complex1, and two internal clones. expect(tf.memory().numTensors).toBe(numTensors + 5); // Only 3 new data buckets are actually created. expect(tf.memory().numDataBuffers).toBe(numBuffers + 3); numTensors = tf.memory().numTensors; numBuffers = tf.memory().numDataBuffers; result = complex1.add(complex2); // A complex tensor is created, which is composed of 2 underlying tensors. expect(tf.memory().numTensors).toBe(numTensors + 3); numTensors = tf.memory().numTensors; expect(result.dtype).toBe('complex64'); expect(result.shape).toEqual([1]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_d.sent(), [4, 6]]); real = tf.real(result); expect(tf.memory().numTensors).toBe(numTensors + 1); numTensors = tf.memory().numTensors; _b = test_util_1.expectArraysClose; return [4 /*yield*/, real.data()]; case 2: _b.apply(void 0, [_d.sent(), [4]]); imag = tf.imag(result); expect(tf.memory().numTensors).toBe(numTensors + 1); numTensors = tf.memory().numTensors; _c = test_util_1.expectArraysClose; return [4 /*yield*/, imag.data()]; case 3: _c.apply(void 0, [_d.sent(), [6]]); // After disposing, there should be no tensors. real1.dispose(); imag1.dispose(); real2.dispose(); imag2.dispose(); complex1.dispose(); complex2.dispose(); result.dispose(); real.dispose(); imag.dispose(); expect(tf.memory().numTensors).toBe(startTensors); return [2 /*return*/]; } }); }); }); it('tf.complex disposing underlying tensors', function () { return __awaiter(_this, void 0, void 0, function () { var numTensors, real, imag, complex, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: numTensors = tf.memory().numTensors; real = tf.tensor1d([3, 30]); imag = tf.tensor1d([4, 40]); expect(tf.memory().numTensors).toEqual(numTensors + 2); complex = tf.complex(real, imag); // real and imag are cloned. expect(tf.memory().numTensors).toEqual(numTensors + 5); real.dispose(); imag.dispose(); // A copy of real and imag still exist, the one owned by the complex tensor. expect(tf.memory().numTensors).toEqual(numTensors + 3); expect(complex.dtype).toBe('complex64'); expect(complex.shape).toEqual(real.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, complex.data()]; case 1: _a.apply(void 0, [_b.sent(), [3, 4, 30, 40]]); complex.dispose(); expect(tf.memory().numTensors).toEqual(numTensors); return [2 /*return*/]; } }); }); }); it('reshape', function () { return __awaiter(_this, void 0, void 0, function () { var memoryBefore, a, b, _a, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: memoryBefore = tf.memory(); a = tf.complex([[1, 3, 5], [7, 9, 11]], [[2, 4, 6], [8, 10, 12]]); // 3 new tensors, the complex64 tensor and the 2 underlying float32 tensors. expect(tf.memory().numTensors).toBe(memoryBefore.numTensors + 3); // Bytes should be counted once. expect(tf.memory().numBytes) .toBe(memoryBefore.numBytes + 6 * BYTES_PER_COMPLEX_ELEMENT); b = a.reshape([6]); // 1 new tensor from the reshape. expect(tf.memory().numTensors).toBe(memoryBefore.numTensors + 4); // No new bytes from a reshape. expect(tf.memory().numBytes) .toBe(memoryBefore.numBytes + 6 * BYTES_PER_COMPLEX_ELEMENT); expect(b.dtype).toBe('complex64'); expect(b.shape).toEqual([6]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, a.data()]; case 1: _b = [_c.sent()]; return [4 /*yield*/, b.data()]; case 2: _a.apply(void 0, _b.concat([_c.sent()])); b.dispose(); // 1 complex tensor should be disposed. expect(tf.memory().numTensors).toBe(memoryBefore.numTensors + 3); // Byte count should not change because the refcounts are all 1. expect(tf.memory().numBytes) .toBe(memoryBefore.numBytes + 6 * BYTES_PER_COMPLEX_ELEMENT); a.dispose(); // All the tensors should now be disposed. expect(tf.memory().numTensors).toBe(memoryBefore.numTensors); // The underlying memory should now be released. expect(tf.memory().numBytes).toBe(memoryBefore.numBytes); return [2 /*return*/]; } }); }); }); it('clone', function () { return __awaiter(_this, void 0, void 0, function () { var memoryBefore, a, b, _a, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: memoryBefore = tf.memory(); a = tf.complex([[1, 3, 5], [7, 9, 11]], [[2, 4, 6], [8, 10, 12]]); // 3 new tensors, the complex64 tensor and the 2 underlying float32 tensors. expect(tf.memory().numTensors).toBe(memoryBefore.numTensors + 3); // Bytes should be counted once expect(tf.memory().numBytes) .toBe(memoryBefore.numBytes + 6 * BYTES_PER_COMPLEX_ELEMENT); b = a.clone(); // 1 new tensor from the clone. expect(tf.memory().numTensors).toBe(memoryBefore.numTensors + 4); // No new bytes from a clone. expect(tf.memory().numBytes) .toBe(memoryBefore.numBytes + 6 * BYTES_PER_COMPLEX_ELEMENT); expect(b.dtype).toBe('complex64'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, a.data()]; case 1: _b = [_c.sent()]; return [4 /*yield*/, b.data()]; case 2: _a.apply(void 0, _b.concat([_c.sent()])); b.dispose(); // 1 complex tensor should be disposed. expect(tf.memory().numTensors).toBe(memoryBefore.numTensors + 3); // Byte count should not change because the refcounts are all 1. expect(tf.memory().numBytes) .toBe(memoryBefore.numBytes + 6 * BYTES_PER_COMPLEX_ELEMENT); a.dispose(); // All the tensors should now be disposed. expect(tf.memory().numTensors).toBe(memoryBefore.numTensors); // The underlying memory should now be released. expect(tf.memory().numBytes).toBe(memoryBefore.numBytes); return [2 /*return*/]; } }); }); }); }); //# sourceMappingURL=complex_ops_test.js.map