"use strict"; /** * @license * Copyright 2017 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var _this = this; Object.defineProperty(exports, "__esModule", { value: true }); var tf = require("../index"); var jasmine_util_1 = require("../jasmine_util"); var test_util_1 = require("../test_util"); jasmine_util_1.describeWithFlags('concat1d', jasmine_util_1.ALL_ENVS, function () { it('3 + 5', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([3]); b = tf.tensor1d([5]); result = tf.concat1d([a, b]); expected = [3, 5]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('TensorLike 3 + 5', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = [3]; b = [5]; result = tf.concat1d([a, b]); expected = [3, 5]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('TensorLike Chained 3 + 5', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([3]); b = [5]; result = a.concat([b]); expected = [3, 5]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('3 + [5,7]', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([3]); b = tf.tensor1d([5, 7]); result = tf.concat1d([a, b]); expected = [3, 5, 7]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('[3,5] + 7', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([3, 5]); b = tf.tensor1d([7]); result = tf.concat1d([a, b]); expected = [3, 5, 7]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('3 + 5 + 7 + 9', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, c, d, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([3]); b = tf.tensor1d([5]); c = tf.tensor1d([7]); d = tf.tensor1d([9]); result = tf.concat1d([a, b, c, d]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [3, 5, 7, 9]]); return [2 /*return*/]; } }); }); }); it('single tensor', function () { return __awaiter(_this, void 0, void 0, function () { var a, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([3]); result = tf.concat1d([a]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [3]]); return [2 /*return*/]; } }); }); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = [3]; b = [5]; result = tf.concat1d([a, b]); expected = [3, 5]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('concat complex input', function () { return __awaiter(_this, void 0, void 0, function () { var c1, c2, axis, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: c1 = tf.complex([1, 2], [1, 2]); c2 = tf.complex([3, 4], [3, 4]); axis = 0; result = tf.concat([c1, c2], axis); expected = [1, 1, 2, 2, 3, 3, 4, 4]; expect(result.dtype).toEqual('complex64'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); }); jasmine_util_1.describeWithFlags('concat2d', jasmine_util_1.ALL_ENVS, function () { it('[[3]] + [[5]], axis=0', function () { return __awaiter(_this, void 0, void 0, function () { var axis, a, b, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: axis = 0; a = tf.tensor2d([3], [1, 1]); b = tf.tensor2d([5], [1, 1]); result = tf.concat2d([a, b], axis); expected = [3, 5]; expect(result.shape).toEqual([2, 1]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('TensorLike [[3]] + [[5]], axis=0', function () { return __awaiter(_this, void 0, void 0, function () { var axis, a, b, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: axis = 0; a = [[3]]; b = [[5]]; result = tf.concat2d([a, b], axis); expected = [3, 5]; expect(result.shape).toEqual([2, 1]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('TensorLike Chained [[3]] + [[5]], axis=0', function () { return __awaiter(_this, void 0, void 0, function () { var axis, a, b, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: axis = 0; a = tf.tensor2d([3], [1, 1]); b = [[5]]; result = a.concat([b], axis); expected = [3, 5]; expect(result.shape).toEqual([2, 1]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('[[3]] + [[5]], axis=1', function () { return __awaiter(_this, void 0, void 0, function () { var axis, a, b, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: axis = 1; a = tf.tensor2d([3], [1, 1]); b = tf.tensor2d([5], [1, 1]); result = tf.concat2d([a, b], axis); expected = [3, 5]; expect(result.shape).toEqual([1, 2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('[[1, 2], [3, 4]] + [[5, 6]], axis=0', function () { return __awaiter(_this, void 0, void 0, function () { var axis, a, b, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: axis = 0; a = tf.tensor2d([[1, 2], [3, 4]], [2, 2]); b = tf.tensor2d([[5, 6]], [1, 2]); result = tf.concat2d([a, b], axis); expected = [1, 2, 3, 4, 5, 6]; expect(result.shape).toEqual([3, 2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('[[1, 2],[3, 4]] + [[5, 6]] + [[7, 8]], axis=0', function () { return __awaiter(_this, void 0, void 0, function () { var axis, a, b, c, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: axis = 0; a = tf.tensor2d([[1, 2], [3, 4]]); b = tf.tensor2d([[5, 6]]); c = tf.tensor2d([[7, 8]]); result = tf.concat2d([a, b, c], axis); expected = [1, 2, 3, 4, 5, 6, 7, 8]; expect(result.shape).toEqual([4, 2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('[[1, 2], [3, 4]] + [[5, 6]], axis=1 throws error', function () { var axis = 1; var a = tf.tensor2d([[1, 2], [3, 4]], [2, 2]); var b = tf.tensor2d([[5, 6]], [1, 2]); expect(function () { return tf.concat2d([a, b], axis); }).toThrowError(); }); it('[[1, 2], [3, 4]] + [[5, 6], [7, 8]], axis=1', function () { return __awaiter(_this, void 0, void 0, function () { var axis, a, b, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: axis = 1; a = tf.tensor2d([[1, 2], [3, 4]], [2, 2]); b = tf.tensor2d([[5, 6], [7, 8]], [2, 2]); result = tf.concat2d([a, b], axis); expected = [1, 2, 5, 6, 3, 4, 7, 8]; expect(result.shape).toEqual([2, 4]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('[[1, 2],[3, 4]] + [[5, 6],[7, 8]] + [[9, 10],[11, 12]], axis=1', function () { return __awaiter(_this, void 0, void 0, function () { var axis, a, b, c, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: axis = 1; a = tf.tensor2d([[1, 2], [3, 4]]); b = tf.tensor2d([[5, 6], [7, 8]]); c = tf.tensor2d([[9, 10], [11, 12]]); result = tf.concat2d([a, b, c], axis); expected = [1, 2, 5, 6, 9, 10, 3, 4, 7, 8, 11, 12]; expect(result.shape).toEqual([2, 6]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var axis, a, b, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: axis = 0; a = [[3]]; b = [[5]]; result = tf.concat2d([a, b], axis); expected = [3, 5]; expect(result.shape).toEqual([2, 1]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('concat zero-sized tensors', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, c, res, _a, res2, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: a = tf.tensor2d([], [0, 5]); b = tf.tensor2d([], [0, 5]); c = tf.tensor2d([], [0, 5]); res = tf.concat([a, b, c], /* axis */ 0); expect(res.shape).toEqual([0, 5]); _a = test_util_1.expectArraysEqual; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_c.sent(), []]); res2 = tf.concat([a, b, c], /* axis */ 1); expect(res2.shape).toEqual([0, 15]); _b = test_util_1.expectArraysEqual; return [4 /*yield*/, res2.data()]; case 2: _b.apply(void 0, [_c.sent(), []]); return [2 /*return*/]; } }); }); }); it('concat complex input axis=0', function () { return __awaiter(_this, void 0, void 0, function () { var c1, c2, axis, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: c1 = tf.complex([[1, 2], [3, 4]], [[1, 2], [3, 4]]); c2 = tf.complex([[5, 6], [7, 8]], [[5, 6], [7, 8]]); axis = 0; result = tf.concat([c1, c2], axis); expected = [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8]; expect(result.dtype).toEqual('complex64'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('concat complex input axis=1', function () { return __awaiter(_this, void 0, void 0, function () { var c1, c2, axis, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: c1 = tf.complex([[1, 2], [3, 4]], [[1, 2], [3, 4]]); c2 = tf.complex([[5, 6], [7, 8]], [[5, 6], [7, 8]]); axis = 1; result = tf.concat([c1, c2], axis); expected = [1, 1, 2, 2, 5, 5, 6, 6, 3, 3, 4, 4, 7, 7, 8, 8]; expect(result.dtype).toEqual('complex64'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); }); jasmine_util_1.describeWithFlags('concat3d', jasmine_util_1.ALL_ENVS, function () { it('shapes correct concat axis=0', function () { return __awaiter(_this, void 0, void 0, function () { var tensor1, tensor2, values, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: tensor1 = tf.tensor3d([1, 2, 3], [1, 1, 3]); tensor2 = tf.tensor3d([4, 5, 6], [1, 1, 3]); values = tf.concat3d([tensor1, tensor2], 0); expect(values.shape).toEqual([2, 1, 3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, values.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 2, 3, 4, 5, 6]]); return [2 /*return*/]; } }); }); }); it('concat axis=0', function () { return __awaiter(_this, void 0, void 0, function () { var tensor1, tensor2, values, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: tensor1 = tf.tensor3d([1, 11, 111, 2, 22, 222], [1, 2, 3]); tensor2 = tf.tensor3d([5, 55, 555, 6, 66, 666, 7, 77, 777, 8, 88, 888], [2, 2, 3]); values = tf.concat3d([tensor1, tensor2], 0); expect(values.shape).toEqual([3, 2, 3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, values.data()]; case 1: _a.apply(void 0, [_b.sent(), [ 1, 11, 111, 2, 22, 222, 5, 55, 555, 6, 66, 666, 7, 77, 777, 8, 88, 888 ]]); return [2 /*return*/]; } }); }); }); it('TensorLike concat axis=0', function () { return __awaiter(_this, void 0, void 0, function () { var tensor1, tensor2, values, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: tensor1 = [[[1, 11, 111], [2, 22, 222]]]; tensor2 = [[[5, 55, 555], [6, 66, 666]], [[7, 77, 777], [8, 88, 888]]]; values = tf.concat3d([tensor1, tensor2], 0); expect(values.shape).toEqual([3, 2, 3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, values.data()]; case 1: _a.apply(void 0, [_b.sent(), [ 1, 11, 111, 2, 22, 222, 5, 55, 555, 6, 66, 666, 7, 77, 777, 8, 88, 888 ]]); return [2 /*return*/]; } }); }); }); it('TensorLike Chained concat axis=0', function () { return __awaiter(_this, void 0, void 0, function () { var tensor1, tensor2, values, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: tensor1 = tf.tensor3d([1, 11, 111, 2, 22, 222], [1, 2, 3]); tensor2 = [[[5, 55, 555], [6, 66, 666]], [[7, 77, 777], [8, 88, 888]]]; values = tensor1.concat([tensor2], 0); expect(values.shape).toEqual([3, 2, 3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, values.data()]; case 1: _a.apply(void 0, [_b.sent(), [ 1, 11, 111, 2, 22, 222, 5, 55, 555, 6, 66, 666, 7, 77, 777, 8, 88, 888 ]]); return [2 /*return*/]; } }); }); }); it('shapes correct concat axis=1', function () { return __awaiter(_this, void 0, void 0, function () { var tensor1, tensor2, values, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: tensor1 = tf.tensor3d([1, 2, 3], [1, 1, 3]); tensor2 = tf.tensor3d([4, 5, 6], [1, 1, 3]); values = tf.concat3d([tensor1, tensor2], 1); expect(values.shape).toEqual([1, 2, 3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, values.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 2, 3, 4, 5, 6]]); return [2 /*return*/]; } }); }); }); it('concat axis=1', function () { return __awaiter(_this, void 0, void 0, function () { var tensor1, tensor2, values, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: tensor1 = tf.tensor3d([1, 11, 111, 3, 33, 333], [2, 1, 3]); tensor2 = tf.tensor3d([5, 55, 555, 6, 66, 666, 7, 77, 777, 8, 88, 888], [2, 2, 3]); values = tf.concat3d([tensor1, tensor2], 1); expect(values.shape).toEqual([2, 3, 3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, values.data()]; case 1: _a.apply(void 0, [_b.sent(), [ 1, 11, 111, 5, 55, 555, 6, 66, 666, 3, 33, 333, 7, 77, 777, 8, 88, 888 ]]); return [2 /*return*/]; } }); }); }); it('shapes correct concat axis=2', function () { return __awaiter(_this, void 0, void 0, function () { var tensor1, tensor2, values, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: tensor1 = tf.tensor3d([1, 2, 3], [1, 1, 3]); tensor2 = tf.tensor3d([4, 5, 6], [1, 1, 3]); values = tf.concat3d([tensor1, tensor2], 2); expect(values.shape).toEqual([1, 1, 6]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, values.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 2, 3, 4, 5, 6]]); return [2 /*return*/]; } }); }); }); it('concat a large number of tensors, axis=0', function () { return __awaiter(_this, void 0, void 0, function () { var tensors, expected, i, axis, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: tensors = []; expected = []; for (i = 0; i < 100; i++) { tensors.push(tf.tensor([i], [1])); expected.push(i); } axis = 0; res = tf.concat(tensors, axis); expect(res.shape).toEqual([100]); expect(res.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('concat a large number of tensors, axis=1', function () { return __awaiter(_this, void 0, void 0, function () { var tensors, expected, i, axis, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: tensors = []; expected = []; for (i = 0; i < 100; i++) { tensors.push(tf.tensor([i], [1, 1])); expected.push(i); } axis = 1; res = tf.concat(tensors, axis); expect(res.shape).toEqual([1, 100]); expect(res.dtype).toBe('float32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('concat axis=2', function () { return __awaiter(_this, void 0, void 0, function () { var tensor1, tensor2, values, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: tensor1 = tf.tensor3d([1, 11, 2, 22, 3, 33, 4, 44], [2, 2, 2]); tensor2 = tf.tensor3d([5, 55, 555, 6, 66, 666, 7, 77, 777, 8, 88, 888], [2, 2, 3]); values = tf.concat3d([tensor1, tensor2], 2); expect(values.shape).toEqual([2, 2, 5]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, values.data()]; case 1: _a.apply(void 0, [_b.sent(), [ 1, 11, 5, 55, 555, 2, 22, 6, 66, 666, 3, 33, 7, 77, 777, 4, 44, 8, 88, 888 ]]); return [2 /*return*/]; } }); }); }); it('concat throws when invalid non-axis shapes, axis=0', function () { var axis = 0; var x1 = tf.tensor3d([1, 11, 111], [1, 1, 3]); var x2 = tf.tensor3d([5, 55, 555, 6, 66, 666, 7, 77, 777, 8, 88, 888], [2, 2, 3]); expect(function () { return tf.concat3d([x1, x2], axis); }).toThrowError(); }); it('concat throws when invalid non-axis shapes, axis=1', function () { var axis = 1; var x1 = tf.tensor3d([1, 11, 111], [1, 1, 3]); var x2 = tf.tensor3d([5, 55, 555, 6, 66, 666, 7, 77, 777, 8, 88, 888], [2, 2, 3]); expect(function () { return tf.concat3d([x1, x2], axis); }).toThrowError(); }); it('concat throws when invalid non-axis shapes, axis=2', function () { var axis = 2; var x1 = tf.tensor3d([1, 11, 2, 22], [1, 2, 2]); var x2 = tf.tensor3d([5, 55, 555, 6, 66, 666, 7, 77, 777, 8, 88, 888], [2, 2, 3]); expect(function () { return tf.concat3d([x1, x2], axis); }).toThrowError(); }); it('gradient concat axis=0', function () { return __awaiter(_this, void 0, void 0, function () { var x1, x2, dy, axis, grads, _a, dx1, dx2, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: x1 = tf.tensor3d([1, 11, 2, 22], [1, 2, 2]); x2 = tf.tensor3d([5, 55, 6, 66, 7, 77, 8, 88], [2, 2, 2]); dy = tf.tensor3d([66, 6, 55, 5, 44, 4, 33, 3, 22, 2, 11, 1], [3, 2, 2]); axis = 0; grads = tf.grads(function (x1, x2) { return tf.concat3d([x1, x2], axis); }); _a = grads([x1, x2], dy), dx1 = _a[0], dx2 = _a[1]; expect(dx1.shape).toEqual(x1.shape); _b = test_util_1.expectArraysClose; return [4 /*yield*/, dx1.data()]; case 1: _b.apply(void 0, [_d.sent(), [66, 6, 55, 5]]); expect(dx2.shape).toEqual(x2.shape); _c = test_util_1.expectArraysClose; return [4 /*yield*/, dx2.data()]; case 2: _c.apply(void 0, [_d.sent(), [44, 4, 33, 3, 22, 2, 11, 1]]); return [2 /*return*/]; } }); }); }); it('gradient with clones', function () { return __awaiter(_this, void 0, void 0, function () { var x1, x2, dy, axis, grads, _a, dx1, dx2, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: x1 = tf.tensor3d([1, 11, 2, 22], [1, 2, 2]); x2 = tf.tensor3d([5, 55, 6, 66, 7, 77, 8, 88], [2, 2, 2]); dy = tf.tensor3d([66, 6, 55, 5, 44, 4, 33, 3, 22, 2, 11, 1], [3, 2, 2]); axis = 0; grads = tf.grads(function (x1, x2) { return tf.concat3d([x1.clone(), x2.clone()], axis).clone(); }); _a = grads([x1, x2], dy), dx1 = _a[0], dx2 = _a[1]; expect(dx1.shape).toEqual(x1.shape); _b = test_util_1.expectArraysClose; return [4 /*yield*/, dx1.data()]; case 1: _b.apply(void 0, [_d.sent(), [66, 6, 55, 5]]); expect(dx2.shape).toEqual(x2.shape); _c = test_util_1.expectArraysClose; return [4 /*yield*/, dx2.data()]; case 2: _c.apply(void 0, [_d.sent(), [44, 4, 33, 3, 22, 2, 11, 1]]); return [2 /*return*/]; } }); }); }); it('gradient concat axis=1', function () { return __awaiter(_this, void 0, void 0, function () { var x1, x2, dy, axis, grads, _a, dx1, dx2, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: x1 = tf.tensor3d([1, 11, 2, 22], [2, 1, 2]); x2 = tf.tensor3d([3, 33, 4, 44, 5, 55, 6, 66], [2, 2, 2]); dy = tf.tensor3d([66, 6, 55, 5, 44, 4, 33, 3, 22, 2, 11, 1], [2, 3, 2]); axis = 1; grads = tf.grads(function (x1, x2) { return tf.concat3d([x1, x2], axis); }); _a = grads([x1, x2], dy), dx1 = _a[0], dx2 = _a[1]; expect(dx1.shape).toEqual(x1.shape); _b = test_util_1.expectArraysClose; return [4 /*yield*/, dx1.data()]; case 1: _b.apply(void 0, [_d.sent(), [66, 6, 33, 3]]); expect(dx2.shape).toEqual(x2.shape); _c = test_util_1.expectArraysClose; return [4 /*yield*/, dx2.data()]; case 2: _c.apply(void 0, [_d.sent(), [55, 5, 44, 4, 22, 2, 11, 1]]); return [2 /*return*/]; } }); }); }); it('gradient concat axis=2', function () { return __awaiter(_this, void 0, void 0, function () { var x1, x2, dy, axis, grads, _a, dx1, dx2, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: x1 = tf.tensor3d([1, 2, 3, 4], [2, 2, 1]); x2 = tf.tensor3d([5, 55, 6, 66, 7, 77, 8, 88], [2, 2, 2]); dy = tf.tensor3d([4, 40, 400, 3, 30, 300, 2, 20, 200, 1, 10, 100], [2, 2, 3]); axis = 2; grads = tf.grads(function (x1, x2) { return tf.concat3d([x1, x2], axis); }); _a = grads([x1, x2], dy), dx1 = _a[0], dx2 = _a[1]; expect(dx1.shape).toEqual(x1.shape); _b = test_util_1.expectArraysClose; return [4 /*yield*/, dx1.data()]; case 1: _b.apply(void 0, [_d.sent(), [4, 3, 2, 1]]); expect(dx2.shape).toEqual(x2.shape); _c = test_util_1.expectArraysClose; return [4 /*yield*/, dx2.data()]; case 2: _c.apply(void 0, [_d.sent(), [40, 400, 30, 300, 20, 200, 10, 100]]); return [2 /*return*/]; } }); }); }); it('gradient concat axis=-1', function () { return __awaiter(_this, void 0, void 0, function () { var x1, x2, dy, axis, grads, _a, dx1, dx2, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: x1 = tf.tensor3d([1, 2, 3, 4], [2, 2, 1]); x2 = tf.tensor3d([5, 55, 6, 66, 7, 77, 8, 88], [2, 2, 2]); dy = tf.tensor3d([4, 40, 400, 3, 30, 300, 2, 20, 200, 1, 10, 100], [2, 2, 3]); axis = -1; grads = tf.grads(function (x1, x2) { return tf.concat3d([x1, x2], axis); }); _a = grads([x1, x2], dy), dx1 = _a[0], dx2 = _a[1]; expect(dx1.shape).toEqual(x1.shape); _b = test_util_1.expectArraysClose; return [4 /*yield*/, dx1.data()]; case 1: _b.apply(void 0, [_d.sent(), [4, 3, 2, 1]]); expect(dx2.shape).toEqual(x2.shape); _c = test_util_1.expectArraysClose; return [4 /*yield*/, dx2.data()]; case 2: _c.apply(void 0, [_d.sent(), [40, 400, 30, 300, 20, 200, 10, 100]]); return [2 /*return*/]; } }); }); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var tensor1, tensor2, values, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: tensor1 = [[[1, 2, 3]]]; tensor2 = [[[4, 5, 6]]]; values = tf.concat3d([tensor1, tensor2], 0); expect(values.shape).toEqual([2, 1, 3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, values.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 2, 3, 4, 5, 6]]); return [2 /*return*/]; } }); }); }); it('concat tensors with 0 in their shape', function () { return __awaiter(_this, void 0, void 0, function () { var tensor1, tensor2, values, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: tensor1 = tf.tensor3d([1, 2, 3, 4, 5, 6], [2, 3, 1]); tensor2 = tf.tensor3d([], [0, 3, 1]); values = tf.concat3d([tensor1, tensor2], 0); expect(values.shape).toEqual([2, 3, 1]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, values.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 2, 3, 4, 5, 6]]); return [2 /*return*/]; } }); }); }); it('concat complex input axis=0', function () { return __awaiter(_this, void 0, void 0, function () { var c1, c2, axis, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: c1 = tf.complex([[[1, 2], [3, 4], [5, 6]]], [[[1, 2], [3, 4], [5, 6]]]); c2 = tf.complex([[[7, 8], [9, 10], [11, 12]]], [[[7, 8], [9, 10], [11, 12]]]); axis = 0; result = tf.concat([c1, c2], axis); expected = [ 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12 ]; expect(result.dtype).toEqual('complex64'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('concat complex input axis=1', function () { return __awaiter(_this, void 0, void 0, function () { var c1, c2, axis, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: c1 = tf.complex([[[1, 2], [3, 4], [5, 6]]], [[[1, 2], [3, 4], [5, 6]]]); c2 = tf.complex([[[7, 8], [9, 10], [11, 12]]], [[[7, 8], [9, 10], [11, 12]]]); axis = 1; result = tf.concat([c1, c2], axis); expected = [ 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12 ]; expect(result.dtype).toEqual('complex64'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('concat complex input axis=1', function () { return __awaiter(_this, void 0, void 0, function () { var c1, c2, axis, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: c1 = tf.complex([[[1, 2], [3, 4], [5, 6]]], [[[1, 2], [3, 4], [5, 6]]]); c2 = tf.complex([[[7, 8], [9, 10], [11, 12]]], [[[7, 8], [9, 10], [11, 12]]]); axis = 2; result = tf.concat([c1, c2], axis); expected = [ 1, 1, 2, 2, 7, 7, 8, 8, 3, 3, 4, 4, 9, 9, 10, 10, 5, 5, 6, 6, 11, 11, 12, 12 ]; expect(result.dtype).toEqual('complex64'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); }); jasmine_util_1.describeWithFlags('concat throws for non-tensors', jasmine_util_1.ALL_ENVS, function () { it('throws when passed a non-tensor', function () { expect(function () { return tf.concat([{}]); }) .toThrowError(/Argument 'tensors\[0\]' passed to 'concat' must be a Tensor/); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var tensor1, tensor2, values, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: tensor1 = [[[1, 2, 3, 4]]]; tensor2 = [[[4, 5, 6, 7]]]; values = tf.concat([tensor1, tensor2], 0); expect(values.shape).toEqual([2, 1, 4]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, values.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 2, 3, 4, 4, 5, 6, 7]]); return [2 /*return*/]; } }); }); }); }); //# sourceMappingURL=concat_test.js.map