"use strict"; /** * @license * Copyright 2017 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var _this = this; Object.defineProperty(exports, "__esModule", { value: true }); var tf = require("../index"); var jasmine_util_1 = require("../jasmine_util"); var test_util_1 = require("../test_util"); jasmine_util_1.describeWithFlags('conv1d', jasmine_util_1.ALL_ENVS, function () { it('conv1d input=2x2x1,d2=1,f=1,s=1,d=1,p=same', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, inputShape, outputDepth, fSize, pad, stride, dataFormat, dilation, x, w, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: inputDepth = 1; inputShape = [2, 2, inputDepth]; outputDepth = 1; fSize = 1; pad = 'same'; stride = 1; dataFormat = 'NWC'; dilation = 1; x = tf.tensor3d([1, 2, 3, 4], inputShape); w = tf.tensor3d([3], [fSize, inputDepth, outputDepth]); result = tf.conv1d(x, w, stride, pad, dataFormat, dilation); expect(result.shape).toEqual([2, 2, 1]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [3, 6, 9, 12]]); return [2 /*return*/]; } }); }); }); it('conv1d input=4x1,d2=1,f=2x1x1,s=1,d=1,p=valid', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, inputShape, outputDepth, fSize, pad, stride, dataFormat, dilation, x, w, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: inputDepth = 1; inputShape = [4, inputDepth]; outputDepth = 1; fSize = 2; pad = 'valid'; stride = 1; dataFormat = 'NWC'; dilation = 1; x = tf.tensor2d([1, 2, 3, 4], inputShape); w = tf.tensor3d([2, 1], [fSize, inputDepth, outputDepth]); result = tf.conv1d(x, w, stride, pad, dataFormat, dilation); expect(result.shape).toEqual([3, 1]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [4, 7, 10]]); return [2 /*return*/]; } }); }); }); it('conv1d input=4x1,d2=1,f=2x1x1,s=1,d=2,p=valid', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, inputShape, outputDepth, fSize, fSizeDilated, pad, stride, dataFormat, dilation, dilationWEffective, x, w, wDilated, result, expectedResult, _a, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: inputDepth = 1; inputShape = [4, inputDepth]; outputDepth = 1; fSize = 2; fSizeDilated = 3; pad = 'valid'; stride = 1; dataFormat = 'NWC'; dilation = 2; dilationWEffective = 1; x = tf.tensor2d([1, 2, 3, 4], inputShape); w = tf.tensor3d([2, 1], [fSize, inputDepth, outputDepth]); wDilated = tf.tensor3d([2, 0, 1], [fSizeDilated, inputDepth, outputDepth]); result = tf.conv1d(x, w, stride, pad, dataFormat, dilation); expectedResult = tf.conv1d(x, wDilated, stride, pad, dataFormat, dilationWEffective); expect(result.shape).toEqual(expectedResult.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _b = [_c.sent()]; return [4 /*yield*/, expectedResult.data()]; case 2: _a.apply(void 0, _b.concat([_c.sent()])); return [2 /*return*/]; } }); }); }); it('conv1d input=14x1,d2=1,f=3x1x1,s=1,d=3,p=valid', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, inputShape, outputDepth, fSize, fSizeDilated, pad, stride, dataFormat, dilation, dilationWEffective, x, w, wDilated, result, expectedResult, _a, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: inputDepth = 1; inputShape = [14, inputDepth]; outputDepth = 1; fSize = 3; fSizeDilated = 7; pad = 'valid'; stride = 1; dataFormat = 'NWC'; dilation = 3; dilationWEffective = 1; x = tf.tensor2d([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], inputShape); w = tf.tensor3d([3, 2, 1], [fSize, inputDepth, outputDepth]); wDilated = tf.tensor3d([3, 0, 0, 2, 0, 0, 1], [fSizeDilated, inputDepth, outputDepth]); result = tf.conv1d(x, w, stride, pad, dataFormat, dilation); expectedResult = tf.conv1d(x, wDilated, stride, pad, dataFormat, dilationWEffective); expect(result.shape).toEqual(expectedResult.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _b = [_c.sent()]; return [4 /*yield*/, expectedResult.data()]; case 2: _a.apply(void 0, _b.concat([_c.sent()])); return [2 /*return*/]; } }); }); }); it('TensorLike', function () { return __awaiter(_this, void 0, void 0, function () { var pad, stride, dataFormat, dilation, x, w, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: pad = 'same'; stride = 1; dataFormat = 'NWC'; dilation = 1; x = [[[1], [2]], [[3], [4]]]; w = [[[3]]]; result = tf.conv1d(x, w, stride, pad, dataFormat, dilation); expect(result.shape).toEqual([2, 2, 1]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [3, 6, 9, 12]]); return [2 /*return*/]; } }); }); }); it('TensorLike Chained', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, inputShape, pad, stride, dataFormat, dilation, x, w, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: inputDepth = 1; inputShape = [2, 2, inputDepth]; pad = 'same'; stride = 1; dataFormat = 'NWC'; dilation = 1; x = tf.tensor3d([1, 2, 3, 4], inputShape); w = [[[3]]]; result = x.conv1d(w, stride, pad, dataFormat, dilation); expect(result.shape).toEqual([2, 2, 1]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [3, 6, 9, 12]]); return [2 /*return*/]; } }); }); }); it('throws when x is not rank 3', function () { var inputDepth = 1; var outputDepth = 1; var fSize = 2; var pad = 0; var stride = 1; var dataFormat = 'NWC'; var dilation = 1; // tslint:disable-next-line:no-any var x = tf.tensor2d([1, 2, 3, 4], [2, 2]); var w = tf.tensor3d([3, 1], [fSize, inputDepth, outputDepth]); expect(function () { return tf.conv1d(x, w, stride, pad, dataFormat, dilation); }) .toThrowError(); }); it('throws when weights is not rank 3', function () { var inputDepth = 1; var inputShape = [2, 2, inputDepth]; var pad = 0; var stride = 1; var dataFormat = 'NWC'; var dilation = 1; var x = tf.tensor3d([1, 2, 3, 4], inputShape); // tslint:disable-next-line:no-any var w = tf.tensor4d([3, 1, 5, 0], [2, 2, 1, 1]); expect(function () { return tf.conv1d(x, w, stride, pad, dataFormat, dilation); }) .toThrowError(); }); it('throws when x depth does not match weight depth', function () { var inputDepth = 1; var wrongInputDepth = 5; var inputShape = [2, 2, inputDepth]; var outputDepth = 1; var fSize = 2; var pad = 0; var stride = 1; var dataFormat = 'NWC'; var dilation = 1; var x = tf.tensor3d([1, 2, 3, 4], inputShape); var w = tf.randomNormal([fSize, wrongInputDepth, outputDepth]); expect(function () { return tf.conv1d(x, w, stride, pad, dataFormat, dilation); }) .toThrowError(); }); it('throws when both stride and dilation are greater than 1', function () { var inputDepth = 1; var inputShape = [2, 2, inputDepth]; var outputDepth = 1; var fSize = 1; var pad = 'same'; var stride = 2; var dataFormat = 'NWC'; var dilation = 2; var x = tf.tensor3d([1, 2, 3, 4], inputShape); var w = tf.tensor3d([3], [fSize, inputDepth, outputDepth]); expect(function () { return tf.conv1d(x, w, stride, pad, dataFormat, dilation); }) .toThrowError(); }); it('throws when passed x as a non-tensor', function () { var inputDepth = 1; var outputDepth = 1; var fSize = 1; var pad = 'same'; var stride = 2; var dataFormat = 'NWC'; var dilation = 2; var w = tf.tensor3d([3], [fSize, inputDepth, outputDepth]); expect(function () { return tf.conv1d({}, w, stride, pad, dataFormat, dilation); }) .toThrowError(/Argument 'x' passed to 'conv1d' must be a Tensor/); }); it('throws when passed filter as a non-tensor', function () { var inputDepth = 1; var inputShape = [2, 2, inputDepth]; var pad = 'same'; var stride = 2; var dataFormat = 'NWC'; var dilation = 2; var x = tf.tensor3d([1, 2, 3, 4], inputShape); expect(function () { return tf.conv1d(x, {}, stride, pad, dataFormat, dilation); }) .toThrowError(/Argument 'filter' passed to 'conv1d' must be a Tensor/); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var pad, stride, dataFormat, dilation, x, w, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: pad = 'same'; stride = 1; dataFormat = 'NWC'; dilation = 1; x = [[[1], [2]], [[3], [4]]]; w = [[[3]]]; result = tf.conv1d(x, w, stride, pad, dataFormat, dilation); expect(result.shape).toEqual([2, 2, 1]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [3, 6, 9, 12]]); return [2 /*return*/]; } }); }); }); it('gradient with clones, input=2x2x1,d2=1,f=1,s=1,d=1,p=same', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, inputShape, outputDepth, fSize, filterShape, pad, stride, dataFormat, dilation, x, w, dy, grads, _a, dx, dw, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: inputDepth = 1; inputShape = [2, 2, inputDepth]; outputDepth = 1; fSize = 1; filterShape = [fSize, inputDepth, outputDepth]; pad = 'same'; stride = 1; dataFormat = 'NWC'; dilation = 1; x = tf.tensor3d([1, 2, 3, 4], inputShape); w = tf.tensor3d([3], filterShape); dy = tf.tensor3d([3, 2, 1, 0], inputShape); grads = tf.grads(function (x, w) { return tf.conv1d(x.clone(), w.clone(), stride, pad, dataFormat, dilation) .clone(); }); _a = grads([x, w], dy), dx = _a[0], dw = _a[1]; expect(dx.shape).toEqual(x.shape); _b = test_util_1.expectArraysClose; return [4 /*yield*/, dx.data()]; case 1: _b.apply(void 0, [_d.sent(), [9, 6, 3, 0]]); expect(dw.shape).toEqual(w.shape); _c = test_util_1.expectArraysClose; return [4 /*yield*/, dw.data()]; case 2: _c.apply(void 0, [_d.sent(), [10]]); return [2 /*return*/]; } }); }); }); it('conv1d gradients input=14x1,d2=1,f=3x1x1,s=1,p=valid', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, inputShape, outputDepth, fSize, pad, stride, dataFormat, x, w, dy, grads, _a, dx, dw, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: inputDepth = 1; inputShape = [14, inputDepth]; outputDepth = 1; fSize = 3; pad = 'valid'; stride = 1; dataFormat = 'NWC'; x = tf.tensor2d([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], inputShape); w = tf.tensor3d([3, 2, 1], [fSize, inputDepth, outputDepth]); dy = tf.tensor2d([3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 0], [12, inputDepth]); grads = tf.grads(function (x, w) { return tf.conv1d(x, w, stride, pad, dataFormat); }); _a = grads([x, w], dy), dx = _a[0], dw = _a[1]; expect(dx.shape).toEqual(x.shape); _b = test_util_1.expectArraysClose; return [4 /*yield*/, dx.data()]; case 1: _b.apply(void 0, [_d.sent(), [9, 12, 10, 4, 10, 12, 10, 4, 10, 12, 10, 4, 1, 0]]); expect(dw.shape).toEqual(w.shape); _c = test_util_1.expectArraysClose; return [4 /*yield*/, dw.data()]; case 2: _c.apply(void 0, [_d.sent(), [102, 120, 138]]); return [2 /*return*/]; } }); }); }); }); //# sourceMappingURL=conv1d_test.js.map