"use strict"; /** * @license * Copyright 2017 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var _this = this; Object.defineProperty(exports, "__esModule", { value: true }); var tf = require("../index"); var jasmine_util_1 = require("../jasmine_util"); var test_util_1 = require("../test_util"); function generateCaseInputs(totalSizeTensor, totalSizeFilter) { var inp = new Array(totalSizeTensor); var filt = new Array(totalSizeFilter); for (var i = 0; i < totalSizeTensor; i++) { inp[i] = i + 1; } for (var i = 0; i < totalSizeFilter; i++) { filt[i] = i + 1; } return { input: inp, filter: filt }; } jasmine_util_1.describeWithFlags('conv2d', jasmine_util_1.ALL_ENVS, function () { it('x=[1,4,4,1] f=[1,1,1,3] s=2 d=1 p=same', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, inputShape, outputDepth, fSize, pad, stride, x, w, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: inputDepth = 1; inputShape = [4, 4, inputDepth]; outputDepth = 3; fSize = 1; pad = 'same'; stride = [2, 2]; x = tf.tensor3d([ 10, 30, 50, 70, 20, 40, 60, 80, -10, -30, -50, -70, -20, -40, -60, -80 ], inputShape); w = tf.tensor4d([1, 0.5, 1], [fSize, fSize, inputDepth, outputDepth]); result = tf.conv2d(x, w, stride, pad); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [10, 5, 10, 50, 25, 50, -10, -5, -10, -50, -25, -50]]); return [2 /*return*/]; } }); }); }); it('x=[2,2,2,2] f=[1,1,2,2] s=1 d=1 p=0', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, inShape, outputDepth, fSize, pad, stride, x, w, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: inputDepth = 2; inShape = [2, 2, 2, inputDepth]; outputDepth = 2; fSize = 1; pad = 0; stride = 1; x = tf.tensor4d([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], inShape); w = tf.tensor4d([-1, 1, -2, 0.5], [fSize, fSize, inputDepth, outputDepth]); result = tf.conv2d(x, w, stride, pad); expect(result.shape).toEqual([2, 2, 2, 2]); expected = [-5, 2, -11, 5, -17, 8, -23, 11, -29, 14, -35, 17, -41, 20, -47, 23]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('x=[2,2,1] f=[1,1,1,2] s=1 d=1 p=0', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, inputShape, outputDepth, fSize, pad, stride, x, w, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: inputDepth = 1; inputShape = [2, 2, inputDepth]; outputDepth = 1; fSize = 1; pad = 0; stride = 1; x = tf.tensor3d([1, 2, 3, 4], inputShape); w = tf.tensor4d([2], [fSize, fSize, inputDepth, outputDepth]); result = tf.conv2d(x, w, stride, pad); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [2, 4, 6, 8]]); return [2 /*return*/]; } }); }); }); it('x=[3,3,2] f=[2,2,2,1] s=1 d=1 p=valid', function () { return __awaiter(_this, void 0, void 0, function () { var pad, stride, x, w, result, resultData; return __generator(this, function (_a) { switch (_a.label) { case 0: pad = 'valid'; stride = 1; x = tf.tensor3d([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90], [3, 3, 2]); w = tf.tensor4d([.1, .2, .3, .4, .5, .6, .7, .8], [2, 2, 2, 1]); result = tf.conv2d(x, w, stride, pad); return [4 /*yield*/, result.data()]; case 1: resultData = _a.sent(); expect(result.shape).toEqual([2, 2, 1]); test_util_1.expectArraysClose(resultData, new Float32Array([25.6, 53.5, 157.0, 220.9])); return [2 /*return*/]; } }); }); }); it('x=[2,2,2,1] f=[1,1,1,1] s=1 d=1 p=0', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, inShape, outputDepth, fSize, pad, stride, x, w, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: inputDepth = 1; inShape = [2, 2, 2, inputDepth]; outputDepth = 1; fSize = 1; pad = 0; stride = 1; x = tf.tensor4d([1, 2, 3, 4, 5, 6, 7, 8], inShape); w = tf.tensor4d([2], [fSize, fSize, inputDepth, outputDepth]); result = tf.conv2d(x, w, stride, pad); expect(result.shape).toEqual([2, 2, 2, 1]); expected = [2, 4, 6, 8, 10, 12, 14, 16]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('x=[2,1,2,2] f=[1,1,1,1] s=1 d=1 p=0 NCHW', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, inShape, outputDepth, fSize, pad, stride, dataFormat, x, w, result, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: inputDepth = 1; inShape = [2, inputDepth, 2, 2]; outputDepth = 1; fSize = 1; pad = 0; stride = 1; dataFormat = 'NCHW'; x = tf.tensor4d([1, 2, 3, 4, 5, 6, 7, 8], inShape); w = tf.tensor4d([2], [fSize, fSize, inputDepth, outputDepth]); result = tf.conv2d(x, w, stride, pad, dataFormat); expect(result.shape).toEqual([2, 1, 2, 2]); expected = [2, 4, 6, 8, 10, 12, 14, 16]; _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('x=[4,2,1] f=[4,2,1,1] s=1 d=1 p=same', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, outputDepth, pad, stride, dataFormat, dilation, x, w, result, resultData; return __generator(this, function (_a) { switch (_a.label) { case 0: inputDepth = 1; outputDepth = 1; pad = 'same'; stride = 1; dataFormat = 'NHWC'; dilation = 1; x = tf.tensor3d([1, 2, 3, 4, 5, 6, 7, 8], [4, 2, inputDepth]); w = tf.tensor4d([3, 1, 5, 0, 2, 7, 8, 9], [4, 2, inputDepth, outputDepth]); result = tf.conv2d(x, w, stride, pad, dataFormat, dilation); return [4 /*yield*/, result.data()]; case 1: resultData = _a.sent(); expect(result.shape).toEqual([4, 2, 1]); test_util_1.expectArraysClose(resultData, [133, 66, 200, 102, 108, 58, 56, 58]); return [2 /*return*/]; } }); }); }); it('x=[2,2,1] f=[2,2,1,1] s=1 d=1 p=same', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, inputShape, outputDepth, fSize, pad, stride, dataFormat, dilation, x, w, result, resultData; return __generator(this, function (_a) { switch (_a.label) { case 0: inputDepth = 1; inputShape = [2, 2, inputDepth]; outputDepth = 1; fSize = 2; pad = 'same'; stride = 1; dataFormat = 'NHWC'; dilation = 1; x = tf.tensor3d([1, 2, 3, 4], inputShape); w = tf.tensor4d([3, 1, 5, 0], [fSize, fSize, inputDepth, outputDepth]); result = tf.conv2d(x, w, stride, pad, dataFormat, dilation); return [4 /*yield*/, result.data()]; case 1: resultData = _a.sent(); expect(result.shape).toEqual([2, 2, 1]); test_util_1.expectArraysClose(resultData, new Float32Array([20, 26, 13, 12])); return [2 /*return*/]; } }); }); }); it('x=[1,2,2] f=[2,2,1,1] s=1 d=1 p=same NCHW', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, inputShape, outputDepth, fSize, pad, stride, dataFormat, dilation, x, w, result, resultData; return __generator(this, function (_a) { switch (_a.label) { case 0: inputDepth = 1; inputShape = [inputDepth, 2, 2]; outputDepth = 1; fSize = 2; pad = 'same'; stride = 1; dataFormat = 'NCHW'; dilation = 1; x = tf.tensor3d([1, 2, 3, 4], inputShape); w = tf.tensor4d([3, 1, 5, 0], [fSize, fSize, inputDepth, outputDepth]); result = tf.conv2d(x, w, stride, pad, dataFormat, dilation); return [4 /*yield*/, result.data()]; case 1: resultData = _a.sent(); expect(result.shape).toEqual([1, 2, 2]); test_util_1.expectArraysClose(resultData, [20, 26, 13, 12]); return [2 /*return*/]; } }); }); }); it('x=[2,2,2] f=[2,2,2,1] s=1 d=1 p=same NCHW', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, inputShape, outputDepth, fSize, pad, stride, dataFormat, dilation, x, w, result, resultData; return __generator(this, function (_a) { switch (_a.label) { case 0: inputDepth = 2; inputShape = [inputDepth, 2, 2]; outputDepth = 1; fSize = 2; pad = 'same'; stride = 1; dataFormat = 'NCHW'; dilation = 1; x = tf.tensor3d([1, 2, 3, 4, 5, 6, 7, 8], inputShape); w = tf.tensor4d([3, 1, 5, 0, 0, 5, 1, 3], [fSize, fSize, inputDepth, outputDepth]); result = tf.conv2d(x, w, stride, pad, dataFormat, dilation); return [4 /*yield*/, result.data()]; case 1: resultData = _a.sent(); expect(result.shape).toEqual([1, 2, 2]); test_util_1.expectArraysClose(resultData, [81, 52, 36, 20]); return [2 /*return*/]; } }); }); }); it('x=[2,1,2,2] f=[2,2,1,1] s=1 d=1 p=same NCHW', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, inputShape, outputDepth, fSize, pad, stride, dataFormat, dilation, x, w, result, resultData; return __generator(this, function (_a) { switch (_a.label) { case 0: inputDepth = 1; inputShape = [2, inputDepth, 2, 2]; outputDepth = 1; fSize = 2; pad = 'same'; stride = 1; dataFormat = 'NCHW'; dilation = 1; x = tf.tensor4d([1, 2, 3, 4, 5, 6, 7, 8], inputShape); w = tf.tensor4d([3, 1, 5, 0], [fSize, fSize, inputDepth, outputDepth]); result = tf.conv2d(x, w, stride, pad, dataFormat, dilation); return [4 /*yield*/, result.data()]; case 1: resultData = _a.sent(); expect(result.shape).toEqual([2, 1, 2, 2]); test_util_1.expectArraysClose(resultData, [20, 26, 13, 12, 56, 58, 29, 24]); return [2 /*return*/]; } }); }); }); it('x=[2,2,1] f=[2,2,1,1] s=1 d=1 p=0', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, inputShape, outputDepth, fSize, pad, stride, dataFormat, dilation, x, w, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: inputDepth = 1; inputShape = [2, 2, inputDepth]; outputDepth = 1; fSize = 2; pad = 0; stride = 1; dataFormat = 'NHWC'; dilation = 1; x = tf.tensor3d([1, 2, 3, 4], inputShape); w = tf.tensor4d([3, 1, 5, 0], [fSize, fSize, inputDepth, outputDepth]); result = tf.conv2d(x, w, stride, pad, dataFormat, dilation); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [20]]); return [2 /*return*/]; } }); }); }); it('x=[4,4,1] f=[2,2,1,1] s=1 d=2 p=0', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, inputShape, outputDepth, fSize, fSizeDilated, pad, stride, dataFormat, dilation, noDilation, x, w, wDilated, result, expectedResult, _a, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: inputDepth = 1; inputShape = [4, 4, inputDepth]; outputDepth = 1; fSize = 2; fSizeDilated = 3; pad = 0; stride = 1; dataFormat = 'NHWC'; dilation = 2; noDilation = 1; x = tf.tensor3d([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], inputShape); w = tf.tensor4d([3, 1, 5, 2], [fSize, fSize, inputDepth, outputDepth]); wDilated = tf.tensor4d([3, 0, 1, 0, 0, 0, 5, 0, 2], [fSizeDilated, fSizeDilated, inputDepth, outputDepth]); result = tf.conv2d(x, w, stride, pad, dataFormat, dilation); expectedResult = tf.conv2d(x, wDilated, stride, pad, dataFormat, noDilation); expect(result.shape).toEqual(expectedResult.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _b = [_c.sent()]; return [4 /*yield*/, expectedResult.data()]; case 2: _a.apply(void 0, _b.concat([_c.sent()])); expect(result.shape).toEqual(expectedResult.shape); expect(result.dtype).toBe(expectedResult.dtype); return [2 /*return*/]; } }); }); }); it('x=[1,3,6,1] f=[2,2,1,1] s=[1,2] d=1 p=valid', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, inputShape, outputDepth, fSize, pad, stride, inputs, x, w, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: inputDepth = 1; inputShape = [1, 3, 6, inputDepth]; outputDepth = 1; fSize = 2; pad = 'valid'; stride = [1, 2]; inputs = generateCaseInputs(1 * 3 * 6 * inputDepth, fSize * fSize); x = tf.tensor4d(inputs.input, inputShape); w = tf.tensor4d(inputs.filter, [fSize, fSize, inputDepth, outputDepth]); result = tf.conv2d(x, w, stride, pad); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [58.0, 78.0, 98.0, 118.0, 138.0, 158.0]]); return [2 /*return*/]; } }); }); }); it('throws when x is not rank 3', function () { var inputDepth = 1; var outputDepth = 1; var fSize = 2; var pad = 0; var stride = 1; // tslint:disable-next-line:no-any var x = tf.tensor2d([1, 2, 3, 4], [2, 2]); var w = tf.tensor4d([3, 1, 5, 0], [fSize, fSize, inputDepth, outputDepth]); expect(function () { return tf.conv2d(x, w, stride, pad); }).toThrowError(); }); it('throws when weights is not rank 4', function () { var inputDepth = 1; var inputShape = [2, 2, inputDepth]; var pad = 0; var stride = 1; var x = tf.tensor3d([1, 2, 3, 4], inputShape); // tslint:disable-next-line:no-any var w = tf.tensor3d([3, 1, 5, 0], [2, 2, 1]); expect(function () { return tf.conv2d(x, w, stride, pad); }).toThrowError(); }); it('throws when x depth does not match weight depth', function () { var inputDepth = 1; var wrongInputDepth = 5; var inputShape = [2, 2, inputDepth]; var outputDepth = 1; var fSize = 2; var pad = 0; var stride = 1; var x = tf.tensor3d([1, 2, 3, 4], inputShape); var w = tf.randomNormal([fSize, fSize, wrongInputDepth, outputDepth]); expect(function () { return tf.conv2d(x, w, stride, pad); }).toThrowError(); }); it('throws when x depth does not match weight depth NCHW', function () { var inputDepth = 1; var wrongInputDepth = 5; var inputShape = [inputDepth, 2, 2]; var outputDepth = 1; var fSize = 2; var pad = 0; var stride = 1; var dataFormat = 'NCHW'; var x = tf.tensor3d([1, 2, 3, 4], inputShape); var w = tf.randomNormal([fSize, fSize, wrongInputDepth, outputDepth]); expect(function () { return tf.conv2d(x, w, stride, pad, dataFormat); }).toThrowError(); }); it('throws when dimRoundingMode is set and pad is not a number', function () { var inputDepth = 1; var inputShape = [2, 2, inputDepth]; var outputDepth = 1; var fSize = 2; var pad = 'valid'; var stride = 1; var dataFormat = 'NHWC'; var dilation = 1; var dimRoundingMode = 'round'; var x = tf.tensor3d([1, 2, 3, 4], inputShape); var w = tf.randomNormal([fSize, fSize, inputDepth, outputDepth]); expect(function () { return tf.conv2d(x, w, stride, pad, dataFormat, dilation, dimRoundingMode); }) .toThrowError(); }); it('throws when both stride and dilation are greater than 1', function () { var inputDepth = 1; var inputShape = [2, 2, inputDepth]; var outputDepth = 1; var fSize = 2; var pad = 0; var stride = [2, 1]; var dataFormat = 'NHWC'; var dilation = [1, 2]; var x = tf.tensor3d([1, 2, 3, 4], inputShape); var w = tf.tensor4d([3, 1, 5, 0], [fSize, fSize, inputDepth, outputDepth]); expect(function () { return tf.conv2d(x, w, stride, pad, dataFormat, dilation); }) .toThrowError(); }); it('gradient with clones input=[3,3,1] f=[2,2,1,1] s=1 p=0', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, outputDepth, inputShape, filterSize, stride, pad, filterShape, filter, x, dy, grads, _a, dx, dfilter, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: inputDepth = 1; outputDepth = 1; inputShape = [3, 3, inputDepth]; filterSize = 2; stride = 1; pad = 0; filterShape = [filterSize, filterSize, inputDepth, outputDepth]; filter = tf.ones(filterShape); x = tf.tensor3d([1, 2, 3, 4, 5, 6, 7, 8, 9], inputShape); dy = tf.tensor3d([3, 1, 2, 0], [2, 2, 1]); grads = tf.grads(function (x, filter) { return x.clone().conv2d(filter.clone(), stride, pad).clone(); }); _a = grads([x, filter], dy), dx = _a[0], dfilter = _a[1]; expect(dx.shape).toEqual(x.shape); _b = test_util_1.expectArraysClose; return [4 /*yield*/, dx.data()]; case 1: _b.apply(void 0, [_d.sent(), [3, 4, 1, 5, 6, 1, 2, 2, 0]]); expect(dfilter.shape).toEqual(filterShape); _c = test_util_1.expectArraysClose; return [4 /*yield*/, dfilter.data()]; case 2: _c.apply(void 0, [_d.sent(), [13, 19, 31, 37]]); return [2 /*return*/]; } }); }); }); it('gradient x=[2,3,3,1] f=[2,2,1,1] s=1 p=0', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, outputDepth, inputShape, filterSize, stride, pad, filterShape, filter, x, dy, grads, _a, dx, dfilter, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: inputDepth = 1; outputDepth = 1; inputShape = [2, 3, 3, inputDepth]; filterSize = 2; stride = 1; pad = 0; filterShape = [filterSize, filterSize, inputDepth, outputDepth]; filter = tf.ones(filterShape); x = tf.tensor4d([1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9], inputShape); dy = tf.tensor4d([3, 1, 2, 0, 3, 1, 2, 0], [2, 2, 2, 1]); grads = tf.grads(function (x, filter) { return x.conv2d(filter, stride, pad); }); _a = grads([x, filter], dy), dx = _a[0], dfilter = _a[1]; expect(dx.shape).toEqual(x.shape); _b = test_util_1.expectArraysClose; return [4 /*yield*/, dx.data()]; case 1: _b.apply(void 0, [_d.sent(), [3, 4, 1, 5, 6, 1, 2, 2, 0, 3, 4, 1, 5, 6, 1, 2, 2, 0]]); expect(dfilter.shape).toEqual(filterShape); _c = test_util_1.expectArraysClose; return [4 /*yield*/, dfilter.data()]; case 2: _c.apply(void 0, [_d.sent(), [13 * 2, 19 * 2, 31 * 2, 37 * 2]]); return [2 /*return*/]; } }); }); }); it('gradient x=[1,1,3,3] f=[2,2,1,1] s=1 p=0 NCHW', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, outputDepth, inputShape, filterSize, stride, pad, dataFormat, filterShape, filter, x, dy, grads, _a, dx, dfilter, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: inputDepth = 1; outputDepth = 1; inputShape = [1, inputDepth, 3, 3]; filterSize = 2; stride = 1; pad = 0; dataFormat = 'NCHW'; filterShape = [filterSize, filterSize, inputDepth, outputDepth]; filter = tf.ones(filterShape); x = tf.tensor4d([1, 2, 3, 4, 5, 6, 7, 8, 9], inputShape); dy = tf.tensor4d([3, 1, 2, 0], [1, 1, 2, 2]); grads = tf.grads(function (x, filter) { return x.conv2d(filter, stride, pad, dataFormat); }); _a = grads([x, filter], dy), dx = _a[0], dfilter = _a[1]; expect(dx.shape).toEqual(x.shape); _b = test_util_1.expectArraysClose; return [4 /*yield*/, dx.data()]; case 1: _b.apply(void 0, [_d.sent(), [3, 4, 1, 5, 6, 1, 2, 2, 0]]); expect(dfilter.shape).toEqual(filterShape); _c = test_util_1.expectArraysClose; return [4 /*yield*/, dfilter.data()]; case 2: _c.apply(void 0, [_d.sent(), [13, 19, 31, 37]]); return [2 /*return*/]; } }); }); }); it('gradient x=[2,1,3,3] f=[2,2,1,1] s=1 p=0 NCHW', function () { return __awaiter(_this, void 0, void 0, function () { var inputDepth, outputDepth, inputShape, filterSize, stride, pad, dataFormat, filterShape, filter, x, dy, grads, _a, dx, dfilter, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: inputDepth = 1; outputDepth = 1; inputShape = [2, inputDepth, 3, 3]; filterSize = 2; stride = 1; pad = 0; dataFormat = 'NCHW'; filterShape = [filterSize, filterSize, inputDepth, outputDepth]; filter = tf.ones(filterShape); x = tf.tensor4d([1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9], inputShape); dy = tf.tensor4d([3, 1, 2, 0, 3, 1, 2, 0], [2, 1, 2, 2]); grads = tf.grads(function (x, filter) { return x.conv2d(filter, stride, pad, dataFormat); }); _a = grads([x, filter], dy), dx = _a[0], dfilter = _a[1]; expect(dx.shape).toEqual(x.shape); _b = test_util_1.expectArraysClose; return [4 /*yield*/, dx.data()]; case 1: _b.apply(void 0, [_d.sent(), [3, 4, 1, 5, 6, 1, 2, 2, 0, 3, 4, 1, 5, 6, 1, 2, 2, 0]]); expect(dfilter.shape).toEqual(filterShape); _c = test_util_1.expectArraysClose; return [4 /*yield*/, dfilter.data()]; case 2: _c.apply(void 0, [_d.sent(), [26, 38, 62, 74]]); return [2 /*return*/]; } }); }); }); it('throws when passed x as a non-tensor', function () { var inputDepth = 1; var outputDepth = 1; var fSize = 1; var pad = 0; var stride = 1; var w = tf.tensor4d([2], [fSize, fSize, inputDepth, outputDepth]); expect(function () { return tf.conv2d({}, w, stride, pad); }) .toThrowError(/Argument 'x' passed to 'conv2d' must be a Tensor/); }); it('throws when passed filter as a non-tensor', function () { var inputDepth = 1; var inputShape = [2, 2, inputDepth]; var pad = 0; var stride = 1; var x = tf.tensor3d([1, 2, 3, 4], inputShape); expect(function () { return tf.conv2d(x, {}, stride, pad); }) .toThrowError(/Argument 'filter' passed to 'conv2d' must be a Tensor/); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var pad, stride, x, w, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: pad = 0; stride = 1; x = [[[1], [2]], [[3], [4]]]; w = [[[[2]]]]; result = tf.conv2d(x, w, stride, pad); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 1: _a.apply(void 0, [_b.sent(), [2, 4, 6, 8]]); return [2 /*return*/]; } }); }); }); }); //# sourceMappingURL=conv2d_test.js.map