"use strict"; /** * @license * Copyright 2019 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ Object.defineProperty(exports, "__esModule", { value: true }); var engine_1 = require("../engine"); var conv_1 = require("../ops/conv"); var conv_util = require("../ops/conv_util"); var operation_1 = require("../ops/operation"); var tensor_util_1 = require("../tensor_util"); var tensor_util_env_1 = require("../tensor_util_env"); var util = require("../util"); var binary_ops_1 = require("./binary_ops"); var broadcast_util = require("./broadcast_util"); var conv_2 = require("./conv"); var fused_util_1 = require("./fused_util"); var matmul_1 = require("./matmul"); var relu_ops_1 = require("./relu_ops"); // Returns gradient for fused activation. var getFusedDyActivation = function (dy, y, activation) { if (activation == null || activation === 'linear') { return dy; } if (activation === 'relu') { return dy.mul(y.step()); } throw new Error("Gradient for activation " + activation + " has not been " + "implemented yet."); }; // Returns gradient for fused bias. var getFusedBiasGradient = function (bias, dyActivation) { var res = dyActivation; var reduceAxes = broadcast_util.getReductionAxes(bias.shape, dyActivation.shape); if (reduceAxes.length > 0) { res = res.sum(reduceAxes); } return res.reshape(bias.shape); }; var applyActivation = function (x, activation, preluActivationWeights) { if (activation === 'linear') { return x; } else if (activation === 'relu') { return relu_ops_1.relu(x); } else if (activation === 'elu') { return relu_ops_1.elu(x); } else if (activation === 'relu6') { return relu_ops_1.relu6(x); } else if (activation === 'prelu') { return relu_ops_1.prelu(x, preluActivationWeights); } throw new Error("Unknown fused activation " + activation + "."); }; /** * Computes the dot product of two matrices with optional activation and bias. * * ```js * const a = tf.tensor2d([-1, -2], [1, 2]); * const b = tf.tensor2d([1, 2, 3, 4], [2, 2]); * const bias = tf.tensor2d([1, 2], [1, 2]); * * tf.fused.matMul({a, b, bias, activation: 'relu'}).print(); * ``` * * @param obj An object with the following properties: * - `a` First matrix in dot product operation. * - `b` Second matrix in dot product operation. * - `transposeA` If true, `a` is transposed before multiplication. * - `transposeB` If true, `b` is transposed before multiplication. * - `bias` Matrix to be added to the result. * - `activation` Name of activation kernel (defaults to `linear`). * - `preluActivationWeights` Tensor of prelu weights. */ function fusedMatMul_(_a) { var _b; var a = _a.a, b = _a.b, _c = _a.transposeA, transposeA = _c === void 0 ? false : _c, _d = _a.transposeB, transposeB = _d === void 0 ? false : _d, bias = _a.bias, _e = _a.activation, activation = _e === void 0 ? 'linear' : _e, preluActivationWeights = _a.preluActivationWeights; if (fused_util_1.shouldFuse(engine_1.ENGINE.state.gradientDepth, activation) === false) { var result = matmul_1.matMul(a, b, transposeA, transposeB); if (bias != null) { result = binary_ops_1.add(result, bias); } return applyActivation(result, activation, preluActivationWeights); } var $a = tensor_util_env_1.convertToTensor(a, 'a', 'fused matMul'); var $b = tensor_util_env_1.convertToTensor(b, 'b', 'fused matMul'); _b = tensor_util_1.makeTypesMatch($a, $b), $a = _b[0], $b = _b[1]; var innerShapeA = transposeA ? $a.shape[$a.rank - 2] : $a.shape[$a.rank - 1]; var innerShapeB = transposeB ? $b.shape[$b.rank - 1] : $b.shape[$b.rank - 2]; var outerShapeA = transposeA ? $a.shape[$a.rank - 1] : $a.shape[$a.rank - 2]; var outerShapeB = transposeB ? $b.shape[$b.rank - 2] : $b.shape[$b.rank - 1]; var outerDimsA = $a.shape.slice(0, -2); var outerDimsB = $b.shape.slice(0, -2); var batchDimA = util.sizeFromShape(outerDimsA); var batchDimB = util.sizeFromShape(outerDimsB); util.assert($a.rank >= 2 && $b.rank >= 2 && $a.rank === $b.rank, function () { return "Error in fused matMul: inputs must have the same rank of at least " + ("2, got ranks " + $a.rank + " and " + $b.rank + "."); }); util.assert(util.arraysEqual(outerDimsA, outerDimsB), function () { return "Error in fused matMul: outer dimensions (" + outerDimsA + ") and (" + (outerDimsB + ") of Tensors with shapes " + $a.shape + " and ") + ($b.shape + " must match."); }); util.assert(innerShapeA === innerShapeB, function () { return "Error in fused matMul: inner shapes (" + innerShapeA + ") and (" + (innerShapeB + ") of Tensors with shapes " + $a.shape + " and ") + ($b.shape + " and transposeA=" + transposeA) + (" and transposeB=" + transposeB + " must match."); }); var outShape = $a.shape.slice(0, -2).concat([outerShapeA, outerShapeB]); var a3D = transposeA ? $a.as3D(batchDimA, innerShapeA, outerShapeA) : $a.as3D(batchDimA, outerShapeA, innerShapeA); var b3D = transposeB ? $b.as3D(batchDimB, outerShapeB, innerShapeB) : $b.as3D(batchDimB, innerShapeB, outerShapeB); var $bias; if (bias != null) { $bias = tensor_util_env_1.convertToTensor(bias, 'bias', 'fused matMul'); $bias = tensor_util_1.makeTypesMatch($bias, $a)[0]; broadcast_util.assertAndGetBroadcastShape(outShape, $bias.shape); } var $preluActivationWeights; if (preluActivationWeights != null) { $preluActivationWeights = tensor_util_env_1.convertToTensor(preluActivationWeights, 'prelu weights', 'fused matMul'); } var grad = function (dy, saved) { var a3D = saved[0], b3D = saved[1], y = saved[2]; var dyActivation = getFusedDyActivation(dy, y, activation); var biasGradient = {}; if (bias != null) { biasGradient = { bias: function () { return getFusedBiasGradient($bias, dyActivation); } }; } if (!transposeA && !transposeB) { return Object.assign({ a: function () { return dyActivation.matMul(b3D, false, true); }, b: function () { return a3D.matMul(dyActivation, true, false); } }, biasGradient); } else if (!transposeA && transposeB) { return Object.assign({ a: function () { return dyActivation.matMul(b3D, false, false); }, b: function () { return dyActivation.matMul(a3D, true, false); } }, biasGradient); } else if (transposeA && !transposeB) { return Object.assign({ a: function () { return b3D.matMul(dyActivation, false, true); }, b: function () { return a3D.matMul(dyActivation, false, false); } }, biasGradient); } else { return Object.assign({ a: function () { return b3D.matMul(dyActivation, true, true); }, b: function () { return dyActivation.matMul(a3D, true, true); } }, biasGradient); } }; var inputs = { a: a3D, b: b3D }; if (bias != null) { inputs.bias = $bias; } if (preluActivationWeights != null) { inputs.preluActivationWeights = $preluActivationWeights; } var inputsToSave = [a3D, b3D]; var outputsToSave = [true]; var res = engine_1.ENGINE.runKernelFunc(function (backend, save) { var y = backend.fusedBatchMatMul({ a: a3D, b: b3D, transposeA: transposeA, transposeB: transposeB, bias: $bias, activation: activation, preluActivationWeights: $preluActivationWeights }); save([a3D, b3D, y]); return y; }, inputs, grad, '_FusedMatMul', { transposeA: transposeA, transposeB: transposeB, activation: activation }, inputsToSave, outputsToSave); return res.reshape(outShape); } /** * Computes a 2D convolution over the input x, optionally fused with adding a * bias and applying an activation. * * ```js * const inputDepth = 2; * const inShape = [2, 2, 2, inputDepth]; * const outputDepth = 2; * const fSize = 1; * const pad = 0; * const strides = 1; * * const x = tf.tensor4d( [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, * 16], inShape); * const w = tf.tensor4d([-1, 1, -2, 0.5], [fSize, fSize, inputDepth, * outputDepth]); * * tf.fused.conv2d({ x, filter: w, strides, pad, dataFormat: 'NHWC', * dilations: [1, 1], bias: tf.scalar(5), activation: 'relu' }).print(); * ``` * * @param obj An object with the following properties: * @param x The input tensor, of rank 4 or rank 3, of shape * `[batch, height, width, inChannels]`. If rank 3, batch of 1 is * assumed. * @param filter The filter, rank 4, of shape * `[filterHeight, filterWidth, inDepth, outDepth]`. * @param strides The strides of the convolution: `[strideHeight, * strideWidth]`. * @param pad The type of padding algorithm. * - `same` and stride 1: output will be of same size as input, * regardless of filter size. * - `valid` output will be smaller than input if filter is larger * than 1x1. * - For more info, see this guide: * [https://www.tensorflow.org/api_guides/python/nn#Convolution]( * https://www.tensorflow.org/api_guides/python/nn#Convolution) * @param dataFormat An optional string from: "NHWC", "NCHW". Defaults to * "NHWC". Specify the data format of the input and output data. With the * default format "NHWC", the data is stored in the order of: [batch, * height, width, channels]. Only "NHWC" is currently supported. * @param dilations The dilation rates: `[dilationHeight, dilationWidth]` * in which we sample input values across the height and width dimensions * in atrous convolution. Defaults to `[1, 1]`. If `dilations` is a single * number, then `dilationHeight == dilationWidth`. If it is greater than * 1, then all values of `strides` must be 1. * @param dimRoundingMode The rounding mode used when computing output * dimensions if pad is a number. If none is provided, it will not round * and error if the output is of fractional size. * @param bias Tensor to be added to the result. * @param activation Name of activation kernel (defaults to `linear`) to be * applied * after biasAdd. * @param preluActivationWeights Tensor of prelu weights to be applied as part * of a `prelu` activation, typically the same shape as `x`. */ function fusedConv2d_(_a) { var x = _a.x, filter = _a.filter, strides = _a.strides, pad = _a.pad, _b = _a.dataFormat, dataFormat = _b === void 0 ? 'NHWC' : _b, _c = _a.dilations, dilations = _c === void 0 ? [1, 1] : _c, dimRoundingMode = _a.dimRoundingMode, bias = _a.bias, _d = _a.activation, activation = _d === void 0 ? 'linear' : _d, preluActivationWeights = _a.preluActivationWeights; activation = activation || 'linear'; if (fused_util_1.shouldFuse(engine_1.ENGINE.state.gradientDepth, activation) === false) { var result = conv_2.conv2d(x, filter, strides, pad, dataFormat, dilations, dimRoundingMode); if (bias != null) { result = binary_ops_1.add(result, bias); } return applyActivation(result, activation, preluActivationWeights); } var $x = tensor_util_env_1.convertToTensor(x, 'x', 'conv2d'); var $filter = tensor_util_env_1.convertToTensor(filter, 'filter', 'conv2d'); var x4D = $x; var reshapedTo4D = false; if ($x.rank === 3) { reshapedTo4D = true; x4D = $x.as4D(1, $x.shape[0], $x.shape[1], $x.shape[2]); } util.assert(x4D.rank === 4, function () { return "Error in fused conv2d: input must be rank 4, but got rank " + (x4D.rank + "."); }); util.assert($filter.rank === 4, function () { return "Error in fused conv2d: filter must be rank 4, but got rank " + ($filter.rank + "."); }); if (dimRoundingMode != null) { util.assert(util.isInt(pad), function () { return "Error in fused conv2d: pad must be an integer when using, " + ("dimRoundingMode " + dimRoundingMode + " but got pad " + pad + "."); }); } util.assert(x4D.shape[3] === $filter.shape[2], function () { return "Error in conv2d: depth of input (" + x4D.shape[3] + ") must match " + ("input depth for filter " + $filter.shape[2] + "."); }); util.assert(conv_util.eitherStridesOrDilationsAreOne(strides, dilations), function () { return 'Error in conv2D: Either strides or dilations must be 1. ' + ("Got strides " + strides + " and dilations '" + dilations + "'"); }); util.assert(dataFormat === 'NHWC', function () { return "Error in conv2d: got dataFormat of " + dataFormat + " but only NHWC is currently supported."; }); var convInfo = conv_util.computeConv2DInfo(x4D.shape, $filter.shape, strides, dilations, pad, dimRoundingMode); var $bias; if (bias != null) { $bias = tensor_util_env_1.convertToTensor(bias, 'bias', 'fused conv2d'); $bias = tensor_util_1.makeTypesMatch($bias, $x)[0]; broadcast_util.assertAndGetBroadcastShape(convInfo.outShape, $bias.shape); } var $preluActivationWeights; if (preluActivationWeights != null) { $preluActivationWeights = tensor_util_env_1.convertToTensor(preluActivationWeights, 'prelu weights', 'fused conv2d'); } var grad = function (dy, saved) { var _a = saved, $filter = _a[0], x4D = _a[1], y = _a[2]; var dyActivation = getFusedDyActivation(dy, y, activation); util.assert(conv_util.tupleValuesAreOne(dilations), function () { return 'Error in gradient of fused conv2D: ' + "dilation rates greater than 1 " + ("are not yet supported in gradients. Got dilations '" + dilations + "'"); }); var biasGradient = {}; if (bias != null) { biasGradient = { bias: function () { return getFusedBiasGradient($bias, dyActivation); } }; } return Object.assign({ x: function () { return conv_1.conv2dDerInput(x4D.shape, dyActivation, $filter, strides, pad); }, filter: function () { return conv_1.conv2dDerFilter(x4D, dyActivation, $filter.shape, strides, pad); } }, biasGradient); }; var inputs = { x: x4D, filter: $filter }; if (bias != null) { inputs.bias = $bias; } if (preluActivationWeights != null) { inputs.preluActivationWeights = $preluActivationWeights; } var inputsToSave = [$filter, x4D]; var outputsToSave = [true]; // Save the only output. var res = engine_1.ENGINE.runKernelFunc(function (backend, save) { var res = backend.fusedConv2d({ input: x4D, filter: $filter, convInfo: convInfo, bias: $bias, activation: activation, preluActivationWeights: $preluActivationWeights }); save([$filter, x4D, res]); return res; }, inputs, grad, 'FusedConv2D', { convInfo: convInfo, activation: activation }, inputsToSave, outputsToSave); if (reshapedTo4D) { return res.as3D(res.shape[1], res.shape[2], res.shape[3]); } return res; } /** * Computes depthwise 2D convolution, optionally fused with adding a * bias and applying an activation. * * Given a 4D `input` array and a `filter` array of shape * `[filterHeight, filterWidth, inChannels, channelMultiplier]` containing * `inChannels` convolutional filters of depth 1, this op applies a * different filter to each input channel (expanding from 1 channel to * `channelMultiplier` channels for each), then concatenates the results * together. The output has `inChannels * channelMultiplier` channels. * * See * [https://www.tensorflow.org/api_docs/python/tf/nn/depthwise_conv2d]( * https://www.tensorflow.org/api_docs/python/tf/nn/depthwise_conv2d) * for more details. * * @param obj An object with the following properties: * @param x The input tensor, of rank 4 or rank 3, of shape * `[batch, height, width, inChannels]`. If rank 3, batch of 1 is * assumed. * @param filter The filter tensor, rank 4, of shape * `[filterHeight, filterWidth, inChannels, channelMultiplier]`. * @param strides The strides of the convolution: `[strideHeight, * strideWidth]`. If strides is a single number, then `strideHeight == * strideWidth`. * @param pad The type of padding algorithm. * - `same` and stride 1: output will be of same size as input, * regardless of filter size. * - `valid`: output will be smaller than input if filter is larger * than 1x1. * - For more info, see this guide: * [https://www.tensorflow.org/api_guides/python/nn#Convolution]( * https://www.tensorflow.org/api_guides/python/nn#Convolution) * @param dilations The dilation rates: `[dilationHeight, dilationWidth]` * in which we sample input values across the height and width dimensions * in atrous convolution. Defaults to `[1, 1]`. If `rate` is a single * number, then `dilationHeight == dilationWidth`. If it is greater than * 1, then all values of `strides` must be 1. * @param dataFormat: An optional string from: "NHWC", "NCHW". Defaults to * "NHWC". Specify the data format of the input and output data. With the * default format "NHWC", the data is stored in the order of: [batch, * height, width, channels]. Only "NHWC" is currently supported. * @param dimRoundingMode The rounding mode used when computing output * dimensions if pad is a number. If none is provided, it will not round * and error if the output is of fractional size. * @param bias Tensor to be added to the result. * @param activation Name of activation kernel (defaults to `linear`). * @param preluActivationWeights Tensor of prelu weights to be applied as part * of a `prelu` activation, typically the same shape as `x`. */ function fusedDepthwiseConv2d_(_a) { var x = _a.x, filter = _a.filter, strides = _a.strides, pad = _a.pad, _b = _a.dataFormat, dataFormat = _b === void 0 ? 'NHWC' : _b, _c = _a.dilations, dilations = _c === void 0 ? [1, 1] : _c, dimRoundingMode = _a.dimRoundingMode, bias = _a.bias, _d = _a.activation, activation = _d === void 0 ? 'linear' : _d, preluActivationWeights = _a.preluActivationWeights; if (fused_util_1.shouldFuse(engine_1.ENGINE.state.gradientDepth, activation) === false) { var result = conv_2.depthwiseConv2d(x, filter, strides, pad, dataFormat, dilations, dimRoundingMode); if (bias != null) { result = binary_ops_1.add(result, bias); } return applyActivation(result, activation, preluActivationWeights); } var $x = tensor_util_env_1.convertToTensor(x, 'x', 'depthwiseConv2d'); var $filter = tensor_util_env_1.convertToTensor(filter, 'filter', 'depthwiseConv2d'); var x4D = $x; var reshapedTo4D = false; if ($x.rank === 3) { reshapedTo4D = true; x4D = $x.as4D(1, $x.shape[0], $x.shape[1], $x.shape[2]); } util.assert(x4D.rank === 4, function () { return "Error in fused depthwiseConv2d: input must be rank 4, but got " + ("rank " + x4D.rank + "."); }); util.assert($filter.rank === 4, function () { return "Error in fused depthwiseConv2d: filter must be rank 4, " + ("but got rank " + $filter.rank + "."); }); util.assert(x4D.shape[3] === $filter.shape[2], function () { return "Error in fused depthwiseConv2d: number of input channels " + ("(" + x4D.shape[3] + ") must match the inChannels dimension in ") + ("filter " + $filter.shape[2] + "."); }); if (dilations == null) { dilations = [1, 1]; } util.assert(conv_util.eitherStridesOrDilationsAreOne(strides, dilations), function () { return 'Error in fused depthwiseConv2d: Either strides or dilations must ' + ("be 1. Got strides " + strides + " and dilations '" + dilations + "'"); }); if (dimRoundingMode != null) { util.assert(util.isInt(pad), function () { return "Error in fused depthwiseConv2d: pad must be an integer when " + ("using dimRoundingMode " + dimRoundingMode + " but got pad " + pad + "."); }); } var convInfo = conv_util.computeConv2DInfo(x4D.shape, $filter.shape, strides, dilations, pad, dimRoundingMode, true /* depthwise */); var $bias; if (bias != null) { $bias = tensor_util_env_1.convertToTensor(bias, 'bias', 'fused conv2d'); $bias = tensor_util_1.makeTypesMatch($bias, $x)[0]; broadcast_util.assertAndGetBroadcastShape(convInfo.outShape, $bias.shape); } var $preluActivationWeights; if (preluActivationWeights != null) { $preluActivationWeights = tensor_util_env_1.convertToTensor(preluActivationWeights, 'prelu weights', 'fused depthwiseConv2d'); } var grad = function (dy, saved) { util.assert(conv_util.tupleValuesAreOne(dilations), function () { return 'Error in gradient of fused depthwiseConv2d: dilation rates ' + "greater than 1 are not yet supported. Got dilations " + ("'" + dilations + "'"); }); var $filter = saved[0], x4D = saved[1], y = saved[2]; var dyActivation = getFusedDyActivation(dy, y, activation); var biasGradient = {}; if (bias != null) { biasGradient = { bias: function () { return getFusedBiasGradient($bias, dyActivation); } }; } return Object.assign({ x: function () { return conv_1.depthwiseConv2dDerInput(x4D.shape, dyActivation, $filter, convInfo); }, filter: function () { return conv_1.depthwiseConv2dDerFilter(x4D, dyActivation, $filter.shape, convInfo); }, }, biasGradient); }; var inputs = { x: x4D, filter: $filter }; if (bias != null) { inputs.bias = $bias; } if (preluActivationWeights != null) { inputs.preluActivationWeights = $preluActivationWeights; } var inputsToSave = [$filter, x4D]; var outputsToSave = [true]; var res = engine_1.ENGINE.runKernelFunc(function (backend, save) { var res = backend.fusedDepthwiseConv2D({ input: x4D, filter: $filter, convInfo: convInfo, bias: $bias, activation: activation, preluActivationWeights: $preluActivationWeights }); save([$filter, x4D, res]); return res; }, inputs, grad, 'FusedDepthwiseConv2D', { convInfo: convInfo, activation: activation }, inputsToSave, outputsToSave); if (reshapedTo4D) { return res.as3D(res.shape[1], res.shape[2], res.shape[3]); } return res; } exports.matMul = operation_1.op({ fusedMatMul_: fusedMatMul_ }); exports.conv2d = operation_1.op({ fusedConv2d_: fusedConv2d_ }); exports.depthwiseConv2d = operation_1.op({ fusedDepthwiseConv2d_: fusedDepthwiseConv2d_ }); //# sourceMappingURL=fused_ops.js.map