"use strict"; /** * @license * Copyright 2018 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; Object.defineProperty(exports, "__esModule", { value: true }); var non_max_suppression_impl_1 = require("../backends/non_max_suppression_impl"); var engine_1 = require("../engine"); var tensor_util_env_1 = require("../tensor_util_env"); var util = require("../util"); var operation_1 = require("./operation"); /** * Bilinear resize a batch of 3D images to a new shape. * * @param images The images, of rank 4 or rank 3, of shape * `[batch, height, width, inChannels]`. If rank 3, batch of 1 is assumed. * @param size The new shape `[newHeight, newWidth]` to resize the * images to. Each channel is resized individually. * @param alignCorners Defaults to False. If true, rescale * input by `(new_height - 1) / (height - 1)`, which exactly aligns the 4 * corners of images and resized images. If false, rescale by * `new_height / height`. Treat similarly the width dimension. */ /** @doc {heading: 'Operations', subheading: 'Images', namespace: 'image'} */ function resizeBilinear_(images, size, alignCorners) { if (alignCorners === void 0) { alignCorners = false; } var $images = tensor_util_env_1.convertToTensor(images, 'images', 'resizeBilinear'); util.assert($images.rank === 3 || $images.rank === 4, function () { return "Error in resizeBilinear: x must be rank 3 or 4, but got " + ("rank " + $images.rank + "."); }); util.assert(size.length === 2, function () { return "Error in resizeBilinear: new shape must 2D, but got shape " + (size + "."); }); var batchImages = $images; var reshapedTo4D = false; if ($images.rank === 3) { reshapedTo4D = true; batchImages = $images.as4D(1, $images.shape[0], $images.shape[1], $images.shape[2]); } var newHeight = size[0], newWidth = size[1]; var forward = function (backend, save) { save([batchImages]); return backend.resizeBilinear(batchImages, newHeight, newWidth, alignCorners); }; var backward = function (dy, saved) { return { x: function () { return engine_1.ENGINE.runKernelFunc(function (backend) { return backend.resizeBilinearBackprop(dy, saved[0], alignCorners); }, {}); } }; }; var res = engine_1.ENGINE.runKernelFunc(forward, { x: batchImages }, backward, 'ResizeBilinear', { alignCorners: alignCorners, newHeight: newHeight, newWidth: newWidth }); if (reshapedTo4D) { return res.as3D(res.shape[1], res.shape[2], res.shape[3]); } return res; } /** * NearestNeighbor resize a batch of 3D images to a new shape. * * @param images The images, of rank 4 or rank 3, of shape * `[batch, height, width, inChannels]`. If rank 3, batch of 1 is assumed. * @param size The new shape `[newHeight, newWidth]` to resize the * images to. Each channel is resized individually. * @param alignCorners Defaults to False. If true, rescale * input by `(new_height - 1) / (height - 1)`, which exactly aligns the 4 * corners of images and resized images. If false, rescale by * `new_height / height`. Treat similarly the width dimension. */ /** @doc {heading: 'Operations', subheading: 'Images', namespace: 'image'} */ function resizeNearestNeighbor_(images, size, alignCorners) { if (alignCorners === void 0) { alignCorners = false; } var $images = tensor_util_env_1.convertToTensor(images, 'images', 'resizeNearestNeighbor'); util.assert($images.rank === 3 || $images.rank === 4, function () { return "Error in resizeNearestNeighbor: x must be rank 3 or 4, but got " + ("rank " + $images.rank + "."); }); util.assert(size.length === 2, function () { return "Error in resizeNearestNeighbor: new shape must 2D, but got shape " + (size + "."); }); util.assert($images.dtype === 'float32' || $images.dtype === 'int32', function () { return '`images` must have `int32` or `float32` as dtype'; }); var batchImages = $images; var reshapedTo4D = false; if ($images.rank === 3) { reshapedTo4D = true; batchImages = $images.as4D(1, $images.shape[0], $images.shape[1], $images.shape[2]); } var newHeight = size[0], newWidth = size[1]; var forward = function (backend, save) { save([batchImages]); return backend.resizeNearestNeighbor(batchImages, newHeight, newWidth, alignCorners); }; var backward = function (dy, saved) { return { batchImages: function () { return engine_1.ENGINE.runKernelFunc(function (backend) { return backend.resizeNearestNeighborBackprop(dy, saved[0], alignCorners); }, {}); } }; }; var res = engine_1.ENGINE.runKernelFunc(forward, { batchImages: batchImages }, backward); if (reshapedTo4D) { return res.as3D(res.shape[1], res.shape[2], res.shape[3]); } return res; } /** * Performs non maximum suppression of bounding boxes based on * iou (intersection over union). * * @param boxes a 2d tensor of shape `[numBoxes, 4]`. Each entry is * `[y1, x1, y2, x2]`, where `(y1, x1)` and `(y2, x2)` are the corners of * the bounding box. * @param scores a 1d tensor providing the box scores of shape `[numBoxes]`. * @param maxOutputSize The maximum number of boxes to be selected. * @param iouThreshold A float representing the threshold for deciding whether * boxes overlap too much with respect to IOU. Must be between [0, 1]. * Defaults to 0.5 (50% box overlap). * @param scoreThreshold A threshold for deciding when to remove boxes based * on score. Defaults to -inf, which means any score is accepted. * @return A 1D tensor with the selected box indices. */ /** @doc {heading: 'Operations', subheading: 'Images', namespace: 'image'} */ function nonMaxSuppression_(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold) { if (iouThreshold === void 0) { iouThreshold = 0.5; } if (scoreThreshold === void 0) { scoreThreshold = Number.NEGATIVE_INFINITY; } var $boxes = tensor_util_env_1.convertToTensor(boxes, 'boxes', 'nonMaxSuppression'); var $scores = tensor_util_env_1.convertToTensor(scores, 'scores', 'nonMaxSuppression'); var inputs = nonMaxSuppSanityCheck($boxes, $scores, maxOutputSize, iouThreshold, scoreThreshold); maxOutputSize = inputs.maxOutputSize; iouThreshold = inputs.iouThreshold; scoreThreshold = inputs.scoreThreshold; var attrs = { maxOutputSize: maxOutputSize, iouThreshold: iouThreshold, scoreThreshold: scoreThreshold }; return engine_1.ENGINE.runKernelFunc(function (b) { return b.nonMaxSuppression($boxes, $scores, maxOutputSize, iouThreshold, scoreThreshold); }, { boxes: $boxes, scores: $scores }, null /* grad */, 'NonMaxSuppressionV3', attrs); } /** This is the async version of `nonMaxSuppression` */ function nonMaxSuppressionAsync_(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold) { if (iouThreshold === void 0) { iouThreshold = 0.5; } if (scoreThreshold === void 0) { scoreThreshold = Number.NEGATIVE_INFINITY; } return __awaiter(this, void 0, void 0, function () { var $boxes, $scores, inputs, boxesAndScores, boxesVals, scoresVals, res; return __generator(this, function (_a) { switch (_a.label) { case 0: $boxes = tensor_util_env_1.convertToTensor(boxes, 'boxes', 'nonMaxSuppressionAsync'); $scores = tensor_util_env_1.convertToTensor(scores, 'scores', 'nonMaxSuppressionAsync'); inputs = nonMaxSuppSanityCheck($boxes, $scores, maxOutputSize, iouThreshold, scoreThreshold); maxOutputSize = inputs.maxOutputSize; iouThreshold = inputs.iouThreshold; scoreThreshold = inputs.scoreThreshold; return [4 /*yield*/, Promise.all([$boxes.data(), $scores.data()])]; case 1: boxesAndScores = _a.sent(); boxesVals = boxesAndScores[0]; scoresVals = boxesAndScores[1]; res = non_max_suppression_impl_1.nonMaxSuppressionV3(boxesVals, scoresVals, maxOutputSize, iouThreshold, scoreThreshold); if ($boxes !== boxes) { $boxes.dispose(); } if ($scores !== scores) { $scores.dispose(); } return [2 /*return*/, res]; } }); }); } /** * Performs non maximum suppression of bounding boxes based on * iou (intersection over union). * * This op also supports a Soft-NMS mode (c.f. * Bodla et al, https://arxiv.org/abs/1704.04503) where boxes reduce the score * of other overlapping boxes, therefore favoring different regions of the image * with high scores. To enable this Soft-NMS mode, set the `softNmsSigma` * parameter to be larger than 0. * * @param boxes a 2d tensor of shape `[numBoxes, 4]`. Each entry is * `[y1, x1, y2, x2]`, where `(y1, x1)` and `(y2, x2)` are the corners of * the bounding box. * @param scores a 1d tensor providing the box scores of shape `[numBoxes]`. * @param maxOutputSize The maximum number of boxes to be selected. * @param iouThreshold A float representing the threshold for deciding whether * boxes overlap too much with respect to IOU. Must be between [0, 1]. * Defaults to 0.5 (50% box overlap). * @param scoreThreshold A threshold for deciding when to remove boxes based * on score. Defaults to -inf, which means any score is accepted. * @param softNmsSigma A float representing the sigma parameter for Soft NMS. * When sigma is 0, it falls back to nonMaxSuppression. * @return A map with the following properties: * - selectedIndices: A 1D tensor with the selected box indices. * - selectedScores: A 1D tensor with the corresponding scores for each * selected box. */ /** @doc {heading: 'Operations', subheading: 'Images', namespace: 'image'} */ function nonMaxSuppressionWithScore_(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma) { if (iouThreshold === void 0) { iouThreshold = 0.5; } if (scoreThreshold === void 0) { scoreThreshold = Number.NEGATIVE_INFINITY; } if (softNmsSigma === void 0) { softNmsSigma = 0.0; } var $boxes = tensor_util_env_1.convertToTensor(boxes, 'boxes', 'nonMaxSuppression'); var $scores = tensor_util_env_1.convertToTensor(scores, 'scores', 'nonMaxSuppression'); var inputs = nonMaxSuppSanityCheck($boxes, $scores, maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma); maxOutputSize = inputs.maxOutputSize; iouThreshold = inputs.iouThreshold; scoreThreshold = inputs.scoreThreshold; softNmsSigma = inputs.softNmsSigma; var attrs = { maxOutputSize: maxOutputSize, iouThreshold: iouThreshold, scoreThreshold: scoreThreshold, softNmsSigma: softNmsSigma }; var result = engine_1.ENGINE.runKernel('NonMaxSuppressionV5', { boxes: $boxes, scores: $scores }, attrs); return { selectedIndices: result[0], selectedScores: result[1] }; } /** This is the async version of `nonMaxSuppressionWithScore` */ function nonMaxSuppressionWithScoreAsync_(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma) { if (iouThreshold === void 0) { iouThreshold = 0.5; } if (scoreThreshold === void 0) { scoreThreshold = Number.NEGATIVE_INFINITY; } if (softNmsSigma === void 0) { softNmsSigma = 0.0; } return __awaiter(this, void 0, void 0, function () { var $boxes, $scores, inputs, boxesAndScores, boxesVals, scoresVals, res; return __generator(this, function (_a) { switch (_a.label) { case 0: $boxes = tensor_util_env_1.convertToTensor(boxes, 'boxes', 'nonMaxSuppressionAsync'); $scores = tensor_util_env_1.convertToTensor(scores, 'scores', 'nonMaxSuppressionAsync'); inputs = nonMaxSuppSanityCheck($boxes, $scores, maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma); maxOutputSize = inputs.maxOutputSize; iouThreshold = inputs.iouThreshold; scoreThreshold = inputs.scoreThreshold; softNmsSigma = inputs.softNmsSigma; return [4 /*yield*/, Promise.all([$boxes.data(), $scores.data()])]; case 1: boxesAndScores = _a.sent(); boxesVals = boxesAndScores[0]; scoresVals = boxesAndScores[1]; res = non_max_suppression_impl_1.nonMaxSuppressionV5(boxesVals, scoresVals, maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma); if ($boxes !== boxes) { $boxes.dispose(); } if ($scores !== scores) { $scores.dispose(); } return [2 /*return*/, res]; } }); }); } function nonMaxSuppSanityCheck(boxes, scores, maxOutputSize, iouThreshold, scoreThreshold, softNmsSigma) { if (iouThreshold == null) { iouThreshold = 0.5; } if (scoreThreshold == null) { scoreThreshold = Number.NEGATIVE_INFINITY; } if (softNmsSigma == null) { softNmsSigma = 0.0; } var numBoxes = boxes.shape[0]; maxOutputSize = Math.min(maxOutputSize, numBoxes); util.assert(0 <= iouThreshold && iouThreshold <= 1, function () { return "iouThreshold must be in [0, 1], but was '" + iouThreshold + "'"; }); util.assert(boxes.rank === 2, function () { return "boxes must be a 2D tensor, but was of rank '" + boxes.rank + "'"; }); util.assert(boxes.shape[1] === 4, function () { return "boxes must have 4 columns, but 2nd dimension was " + boxes.shape[1]; }); util.assert(scores.rank === 1, function () { return 'scores must be a 1D tensor'; }); util.assert(scores.shape[0] === numBoxes, function () { return "scores has incompatible shape with boxes. Expected " + numBoxes + ", " + ("but was " + scores.shape[0]); }); util.assert(0 <= softNmsSigma && softNmsSigma <= 1, function () { return "softNmsSigma must be in [0, 1], but was '" + softNmsSigma + "'"; }); return { maxOutputSize: maxOutputSize, iouThreshold: iouThreshold, scoreThreshold: scoreThreshold, softNmsSigma: softNmsSigma }; } /** * Extracts crops from the input image tensor and resizes them using bilinear * sampling or nearest neighbor sampling (possibly with aspect ratio change) * to a common output size specified by crop_size. * * @param image 4d tensor of shape `[batch,imageHeight,imageWidth, depth]`, * where imageHeight and imageWidth must be positive, specifying the * batch of images from which to take crops * @param boxes 2d float32 tensor of shape `[numBoxes, 4]`. Each entry is * `[y1, x1, y2, x2]`, where `(y1, x1)` and `(y2, x2)` are the normalized * coordinates of the box in the boxInd[i]'th image in the batch * @param boxInd 1d int32 tensor of shape `[numBoxes]` with values in range * `[0, batch)` that specifies the image that the `i`-th box refers to. * @param cropSize 1d int32 tensor of 2 elements `[cropHeigh, cropWidth]` * specifying the size to which all crops are resized to. * @param method Optional string from `'bilinear' | 'nearest'`, * defaults to bilinear, which specifies the sampling method for resizing * @param extrapolationValue A threshold for deciding when to remove boxes based * on score. Defaults to 0. * @return A 4D tensor of the shape `[numBoxes,cropHeight,cropWidth,depth]` */ /** @doc {heading: 'Operations', subheading: 'Images', namespace: 'image'} */ function cropAndResize_(image, boxes, boxInd, cropSize, method, extrapolationValue) { var $image = tensor_util_env_1.convertToTensor(image, 'image', 'cropAndResize'); var $boxes = tensor_util_env_1.convertToTensor(boxes, 'boxes', 'cropAndResize', 'float32'); var $boxInd = tensor_util_env_1.convertToTensor(boxInd, 'boxInd', 'cropAndResize', 'int32'); method = method || 'bilinear'; extrapolationValue = extrapolationValue || 0; var numBoxes = $boxes.shape[0]; util.assert($image.rank === 4, function () { return 'Error in cropAndResize: image must be rank 4,' + ("but got rank " + $image.rank + "."); }); util.assert($boxes.rank === 2 && $boxes.shape[1] === 4, function () { return "Error in cropAndResize: boxes must be have size [" + numBoxes + ",4] " + ("but had shape " + $boxes.shape + "."); }); util.assert($boxInd.rank === 1 && $boxInd.shape[0] === numBoxes, function () { return "Error in cropAndResize: boxInd must be have size [" + numBoxes + "] " + ("but had shape " + $boxes.shape + "."); }); util.assert(cropSize.length === 2, function () { return "Error in cropAndResize: cropSize must be of length 2, but got " + ("length " + cropSize.length + "."); }); util.assert(cropSize[0] >= 1 && cropSize[1] >= 1, function () { return "cropSize must be atleast [1,1], but was " + cropSize; }); util.assert(method === 'bilinear' || method === 'nearest', function () { return "method must be bilinear or nearest, but was " + method; }); var forward = function (backend, save) { return backend.cropAndResize($image, $boxes, $boxInd, cropSize, method, extrapolationValue); }; var res = engine_1.ENGINE.runKernelFunc(forward, { images: $image, boxes: $boxes, boxInd: $boxInd }, null /* der */, 'CropAndResize', { method: method, extrapolationValue: extrapolationValue, cropSize: cropSize }); return res; } exports.resizeBilinear = operation_1.op({ resizeBilinear_: resizeBilinear_ }); exports.resizeNearestNeighbor = operation_1.op({ resizeNearestNeighbor_: resizeNearestNeighbor_ }); exports.nonMaxSuppression = operation_1.op({ nonMaxSuppression_: nonMaxSuppression_ }); exports.nonMaxSuppressionAsync = nonMaxSuppressionAsync_; exports.nonMaxSuppressionWithScore = operation_1.op({ nonMaxSuppressionWithScore_: nonMaxSuppressionWithScore_ }); exports.nonMaxSuppressionWithScoreAsync = nonMaxSuppressionWithScoreAsync_; exports.cropAndResize = operation_1.op({ cropAndResize_: cropAndResize_ }); //# sourceMappingURL=image_ops.js.map