"use strict"; /** * @license * Copyright 2018 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; Object.defineProperty(exports, "__esModule", { value: true }); var where_impl_1 = require("../backends/where_impl"); var engine_1 = require("../engine"); var tensor_util_env_1 = require("../tensor_util_env"); var util_1 = require("../util"); var broadcast_util_1 = require("./broadcast_util"); var operation_1 = require("./operation"); var tensor_ops_1 = require("./tensor_ops"); /** * Returns the truth value of `NOT x` element-wise. * * ```js * const a = tf.tensor1d([false, true], 'bool'); * * a.logicalNot().print(); * ``` * * @param x The input tensor. Must be of dtype 'bool'. */ /** @doc {heading: 'Operations', subheading: 'Logical'} */ function logicalNot_(x) { var $x = tensor_util_env_1.convertToTensor(x, 'x', 'logicalNot', 'bool'); return engine_1.ENGINE.runKernelFunc(function (backend) { return backend.logicalNot($x); }, { $x: $x }); } /** * Returns the truth value of `a AND b` element-wise. Supports broadcasting. * * ```js * const a = tf.tensor1d([false, false, true, true], 'bool'); * const b = tf.tensor1d([false, true, false, true], 'bool'); * * a.logicalAnd(b).print(); * ``` * * @param a The first input tensor. Must be of dtype bool. * @param b The second input tensor. Must be of dtype bool. */ /** @doc {heading: 'Operations', subheading: 'Logical'} */ function logicalAnd_(a, b) { var $a = tensor_util_env_1.convertToTensor(a, 'a', 'logicalAnd', 'bool'); var $b = tensor_util_env_1.convertToTensor(b, 'b', 'logicalAnd', 'bool'); broadcast_util_1.assertAndGetBroadcastShape($a.shape, $b.shape); return engine_1.ENGINE.runKernelFunc(function (backend) { return backend.logicalAnd($a, $b); }, { a: $a, b: $b }, null /* grad */, 'LogicalAnd'); } /** * Returns the truth value of `a OR b` element-wise. Supports broadcasting. * * ```js * const a = tf.tensor1d([false, false, true, true], 'bool'); * const b = tf.tensor1d([false, true, false, true], 'bool'); * * a.logicalOr(b).print(); * ``` * @param a The first input tensor. Must be of dtype bool. * @param b The second input tensor. Must be of dtype bool. */ /** @doc {heading: 'Operations', subheading: 'Logical'} */ function logicalOr_(a, b) { var $a = tensor_util_env_1.convertToTensor(a, 'a', 'logicalOr', 'bool'); var $b = tensor_util_env_1.convertToTensor(b, 'b', 'logicalOr', 'bool'); broadcast_util_1.assertAndGetBroadcastShape($a.shape, $b.shape); return engine_1.ENGINE.runKernelFunc(function (backend) { return backend.logicalOr($a, $b); }, { $a: $a, $b: $b }); } /** * Returns the truth value of `a XOR b` element-wise. Supports broadcasting. * * ```js * const a = tf.tensor1d([false, false, true, true], 'bool'); * const b = tf.tensor1d([false, true, false, true], 'bool'); * * a.logicalXor(b).print(); * ``` * * @param a The first input tensor. Must be of dtype bool. * @param b The second input tensor. Must be of dtype bool. */ /** @doc {heading: 'Operations', subheading: 'Logical'} */ function logicalXor_(a, b) { var $a = tensor_util_env_1.convertToTensor(a, 'a', 'logicalXor', 'bool'); var $b = tensor_util_env_1.convertToTensor(b, 'b', 'logicalXor', 'bool'); broadcast_util_1.assertAndGetBroadcastShape($a.shape, $b.shape); // x ^ y = (x | y) & ~(x & y) return exports.logicalOr(a, b).logicalAnd(exports.logicalAnd(a, b).logicalNot()); } /** * Returns the elements, either `a` or `b` depending on the `condition`. * * If the condition is true, select from `a`, otherwise select from `b`. * * ```js * const cond = tf.tensor1d([false, false, true], 'bool'); * const a = tf.tensor1d([1 , 2, 3]); * const b = tf.tensor1d([-1, -2, -3]); * * a.where(cond, b).print(); * ``` * * @param condition The input condition. Must be of dtype bool. * @param a If `condition` is rank 1, `a` may have a higher rank but * its first dimension must match the size of `condition`. * @param b A tensor with the same shape and type as `a`. */ /** @doc {heading: 'Operations', subheading: 'Logical'} */ function where_(condition, a, b) { var $a = tensor_util_env_1.convertToTensor(a, 'a', 'where'); var $b = tensor_util_env_1.convertToTensor(b, 'b', 'where'); var $condition = tensor_util_env_1.convertToTensor(condition, 'condition', 'where', 'bool'); util_1.assertShapesMatch($a.shape, $b.shape, 'Error in where: '); if ($condition.rank === 1) { // If condition rank is 1, then the first dimension must match the size of // condition. util_1.assert($condition.shape[0] === $a.shape[0], function () { return 'The first dimension of `a` must match the size of `condition`.'; }); } else { // A must have the same shape as condition. util_1.assertShapesMatch($condition.shape, $b.shape, 'Error in where: '); } // TODO(julianoks): Return null for condition gradient // when backprop supports it. var grad = function (dy, saved) { var $condition = saved[0]; return { $condition: function () { return tensor_ops_1.zerosLike($condition).toFloat(); }, $a: function () { return dy.mul($condition.cast(dy.dtype)); }, $b: function () { return dy.mul($condition.logicalNot().cast(dy.dtype)); } }; }; return engine_1.ENGINE.runKernelFunc(function (backend, save) { var res = backend.select($condition, $a, $b); save([$condition]); return res; }, { $condition: $condition, $a: $a, $b: $b }, grad); } /** * Returns the coordinates of true elements of condition. * * The coordinates are returned in a 2-D tensor where the first dimension (rows) * represents the number of true elements, and the second dimension (columns) * represents the coordinates of the true elements. Keep in mind, the shape of * the output tensor can vary depending on how many true values there are in * input. Indices are output in row-major order. The resulting tensor has the * shape `[numTrueElems, condition.rank]`. * * This is analogous to calling the python `tf.where(cond)` without an x or y. * * ```js * const cond = tf.tensor1d([false, false, true], 'bool'); * const result = await tf.whereAsync(cond); * result.print(); * ``` */ /** @doc {heading: 'Operations', subheading: 'Logical'} */ function whereAsync_(condition) { return __awaiter(this, void 0, void 0, function () { var $condition, vals, res; return __generator(this, function (_a) { switch (_a.label) { case 0: $condition = tensor_util_env_1.convertToTensor(condition, 'condition', 'whereAsync', 'bool'); return [4 /*yield*/, $condition.data()]; case 1: vals = _a.sent(); res = where_impl_1.whereImpl($condition.shape, vals); if (condition !== $condition) { $condition.dispose(); } return [2 /*return*/, res]; } }); }); } exports.logicalAnd = operation_1.op({ logicalAnd_: logicalAnd_ }); exports.logicalNot = operation_1.op({ logicalNot_: logicalNot_ }); exports.logicalOr = operation_1.op({ logicalOr_: logicalOr_ }); exports.logicalXor = operation_1.op({ logicalXor_: logicalXor_ }); exports.where = operation_1.op({ where_: where_ }); exports.whereAsync = whereAsync_; //# sourceMappingURL=logical_ops.js.map