"use strict"; /** * @license * Copyright 2018 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var _this = this; Object.defineProperty(exports, "__esModule", { value: true }); var tf = require("../index"); var jasmine_util_1 = require("../jasmine_util"); var test_util_1 = require("../test_util"); jasmine_util_1.describeWithFlags('lstm', jasmine_util_1.ALL_ENVS, function () { it('MultiRNNCell with 2 BasicLSTMCells', function () { return __awaiter(_this, void 0, void 0, function () { var lstmKernel1, lstmBias1, lstmKernel2, lstmBias2, forgetBias, lstm1, lstm2, c, h, onehot, output, _a, _b, _c, _d; return __generator(this, function (_e) { switch (_e.label) { case 0: lstmKernel1 = tf.tensor2d([ 0.26242125034332275, -0.8787832260131836, 0.781475305557251, 1.337337851524353, 0.6180247068405151, -0.2760246992111206, -0.11299663782119751, -0.46332040429115295, -0.1765323281288147, 0.6807947158813477, -0.8326982855796814, 0.6732975244522095 ], [3, 4]); lstmBias1 = tf.tensor1d([1.090713620185852, -0.8282332420349121, 0, 1.0889357328414917]); lstmKernel2 = tf.tensor2d([ -1.893059492111206, -1.0185645818710327, -0.6270437240600586, -2.1829540729522705, -0.4583775997161865, -0.5454602241516113, -0.3114445209503174, 0.8450229167938232 ], [2, 4]); lstmBias2 = tf.tensor1d([0.9906240105628967, 0.6248329877853394, 0, 1.0224634408950806]); forgetBias = tf.scalar(1.0); lstm1 = function (data, c, h) { return tf.basicLSTMCell(forgetBias, lstmKernel1, lstmBias1, data, c, h); }; lstm2 = function (data, c, h) { return tf.basicLSTMCell(forgetBias, lstmKernel2, lstmBias2, data, c, h); }; c = [ tf.zeros([1, lstmBias1.shape[0] / 4]), tf.zeros([1, lstmBias2.shape[0] / 4]) ]; h = [ tf.zeros([1, lstmBias1.shape[0] / 4]), tf.zeros([1, lstmBias2.shape[0] / 4]) ]; onehot = tf.buffer([1, 2], 'float32'); onehot.set(1.0, 0, 0); output = tf.multiRNNCell([lstm1, lstm2], onehot.toTensor(), c, h); _a = test_util_1.expectArraysClose; return [4 /*yield*/, output[0][0].data()]; case 1: _a.apply(void 0, [_e.sent(), [-0.7440074682235718]]); _b = test_util_1.expectArraysClose; return [4 /*yield*/, output[0][1].data()]; case 2: _b.apply(void 0, [_e.sent(), [0.7460772395133972]]); _c = test_util_1.expectArraysClose; return [4 /*yield*/, output[1][0].data()]; case 3: _c.apply(void 0, [_e.sent(), [-0.5802832245826721]]); _d = test_util_1.expectArraysClose; return [4 /*yield*/, output[1][1].data()]; case 4: _d.apply(void 0, [_e.sent(), [0.5745711922645569]]); return [2 /*return*/]; } }); }); }); it('basicLSTMCell with batch=2', function () { return __awaiter(_this, void 0, void 0, function () { var lstmKernel, lstmBias, forgetBias, data, batchedData, c, batchedC, h, batchedH, _a, newC, newH, newCVals, newHVals; return __generator(this, function (_b) { switch (_b.label) { case 0: lstmKernel = tf.randomNormal([3, 4]); lstmBias = tf.randomNormal([4]); forgetBias = tf.scalar(1.0); data = tf.randomNormal([1, 2]); batchedData = tf.concat2d([data, data], 0); c = tf.randomNormal([1, 1]); batchedC = tf.concat2d([c, c], 0); h = tf.randomNormal([1, 1]); batchedH = tf.concat2d([h, h], 0); _a = tf.basicLSTMCell(forgetBias, lstmKernel, lstmBias, batchedData, batchedC, batchedH), newC = _a[0], newH = _a[1]; return [4 /*yield*/, newC.array()]; case 1: newCVals = _b.sent(); return [4 /*yield*/, newH.array()]; case 2: newHVals = _b.sent(); expect(newCVals[0][0]).toEqual(newCVals[1][0]); expect(newHVals[0][0]).toEqual(newHVals[1][0]); return [2 /*return*/]; } }); }); }); it('basicLSTMCell accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var lstmKernel, lstmBias, forgetBias, data, batchedData, c, batchedC, h, batchedH, _a, newC, newH, newCVals, newHVals; return __generator(this, function (_b) { switch (_b.label) { case 0: lstmKernel = tf.randomNormal([3, 4]); lstmBias = [0, 0, 0, 0]; forgetBias = 1; data = [[0, 0]]; batchedData = tf.concat2d([data, data], 0); c = [[0]]; batchedC = tf.concat2d([c, c], 0); h = [[0]]; batchedH = tf.concat2d([h, h], 0); _a = tf.basicLSTMCell(forgetBias, lstmKernel, lstmBias, batchedData, batchedC, batchedH), newC = _a[0], newH = _a[1]; return [4 /*yield*/, newC.array()]; case 1: newCVals = _b.sent(); return [4 /*yield*/, newH.array()]; case 2: newHVals = _b.sent(); expect(newCVals[0][0]).toEqual(newCVals[1][0]); expect(newHVals[0][0]).toEqual(newHVals[1][0]); return [2 /*return*/]; } }); }); }); }); jasmine_util_1.describeWithFlags('multiRNN throws when passed non-tensor', jasmine_util_1.ALL_ENVS, function () { it('input: data', function () { var lstmKernel1 = tf.zeros([3, 4]); var lstmBias1 = tf.zeros([4]); var lstmKernel2 = tf.zeros([2, 4]); var lstmBias2 = tf.zeros([4]); var forgetBias = tf.scalar(1.0); var lstm1 = function (data, c, h) { return tf.basicLSTMCell(forgetBias, lstmKernel1, lstmBias1, data, c, h); }; var lstm2 = function (data, c, h) { return tf.basicLSTMCell(forgetBias, lstmKernel2, lstmBias2, data, c, h); }; var c = [ tf.zeros([1, lstmBias1.shape[0] / 4]), tf.zeros([1, lstmBias2.shape[0] / 4]) ]; var h = [ tf.zeros([1, lstmBias1.shape[0] / 4]), tf.zeros([1, lstmBias2.shape[0] / 4]) ]; expect(function () { return tf.multiRNNCell([lstm1, lstm2], {}, c, h); }) .toThrowError(/Argument 'data' passed to 'multiRNNCell' must be a Tensor/); }); it('input: c', function () { var lstmKernel1 = tf.zeros([3, 4]); var lstmBias1 = tf.zeros([4]); var lstmKernel2 = tf.zeros([2, 4]); var lstmBias2 = tf.zeros([4]); var forgetBias = tf.scalar(1.0); var lstm1 = function (data, c, h) { return tf.basicLSTMCell(forgetBias, lstmKernel1, lstmBias1, data, c, h); }; var lstm2 = function (data, c, h) { return tf.basicLSTMCell(forgetBias, lstmKernel2, lstmBias2, data, c, h); }; var h = [ tf.zeros([1, lstmBias1.shape[0] / 4]), tf.zeros([1, lstmBias2.shape[0] / 4]) ]; var data = tf.zeros([1, 2]); expect(function () { return tf.multiRNNCell([lstm1, lstm2], data, [{}], h); }) .toThrowError(/Argument 'c\[0\]' passed to 'multiRNNCell' must be a Tensor/); }); it('input: h', function () { var lstmKernel1 = tf.zeros([3, 4]); var lstmBias1 = tf.zeros([4]); var lstmKernel2 = tf.zeros([2, 4]); var lstmBias2 = tf.zeros([4]); var forgetBias = tf.scalar(1.0); var lstm1 = function (data, c, h) { return tf.basicLSTMCell(forgetBias, lstmKernel1, lstmBias1, data, c, h); }; var lstm2 = function (data, c, h) { return tf.basicLSTMCell(forgetBias, lstmKernel2, lstmBias2, data, c, h); }; var c = [ tf.zeros([1, lstmBias1.shape[0] / 4]), tf.zeros([1, lstmBias2.shape[0] / 4]) ]; var data = tf.zeros([1, 2]); expect(function () { return tf.multiRNNCell([lstm1, lstm2], data, c, [{}]); }) .toThrowError(/Argument 'h\[0\]' passed to 'multiRNNCell' must be a Tensor/); }); }); jasmine_util_1.describeWithFlags('basicLSTMCell throws with non-tensor', jasmine_util_1.ALL_ENVS, function () { it('input: forgetBias', function () { var lstmKernel = tf.randomNormal([3, 4]); var lstmBias = tf.randomNormal([4]); var data = tf.randomNormal([1, 2]); var batchedData = tf.concat2d([data, data], 0); // 2x2 var c = tf.randomNormal([1, 1]); var batchedC = tf.concat2d([c, c], 0); // 2x1 var h = tf.randomNormal([1, 1]); var batchedH = tf.concat2d([h, h], 0); // 2x1 expect(function () { return tf.basicLSTMCell({}, lstmKernel, lstmBias, batchedData, batchedC, batchedH); }) .toThrowError(/Argument 'forgetBias' passed to 'basicLSTMCell' must be a Tensor/); }); it('input: lstmKernel', function () { var lstmBias = tf.randomNormal([4]); var forgetBias = tf.scalar(1.0); var data = tf.randomNormal([1, 2]); var batchedData = tf.concat2d([data, data], 0); // 2x2 var c = tf.randomNormal([1, 1]); var batchedC = tf.concat2d([c, c], 0); // 2x1 var h = tf.randomNormal([1, 1]); var batchedH = tf.concat2d([h, h], 0); // 2x1 expect(function () { return tf.basicLSTMCell(forgetBias, {}, lstmBias, batchedData, batchedC, batchedH); }) .toThrowError(/Argument 'lstmKernel' passed to 'basicLSTMCell' must be a Tensor/); }); it('input: lstmBias', function () { var lstmKernel = tf.randomNormal([3, 4]); var forgetBias = tf.scalar(1.0); var data = tf.randomNormal([1, 2]); var batchedData = tf.concat2d([data, data], 0); // 2x2 var c = tf.randomNormal([1, 1]); var batchedC = tf.concat2d([c, c], 0); // 2x1 var h = tf.randomNormal([1, 1]); var batchedH = tf.concat2d([h, h], 0); // 2x1 expect(function () { return tf.basicLSTMCell(forgetBias, lstmKernel, {}, batchedData, batchedC, batchedH); }) .toThrowError(/Argument 'lstmBias' passed to 'basicLSTMCell' must be a Tensor/); }); it('input: data', function () { var lstmKernel = tf.randomNormal([3, 4]); var lstmBias = tf.randomNormal([4]); var forgetBias = tf.scalar(1.0); var c = tf.randomNormal([1, 1]); var batchedC = tf.concat2d([c, c], 0); // 2x1 var h = tf.randomNormal([1, 1]); var batchedH = tf.concat2d([h, h], 0); // 2x1 expect(function () { return tf.basicLSTMCell(forgetBias, lstmKernel, lstmBias, {}, batchedC, batchedH); }) .toThrowError(/Argument 'data' passed to 'basicLSTMCell' must be a Tensor/); }); it('input: c', function () { var lstmKernel = tf.randomNormal([3, 4]); var lstmBias = tf.randomNormal([4]); var forgetBias = tf.scalar(1.0); var data = tf.randomNormal([1, 2]); var batchedData = tf.concat2d([data, data], 0); // 2x2 var h = tf.randomNormal([1, 1]); var batchedH = tf.concat2d([h, h], 0); // 2x1 expect(function () { return tf.basicLSTMCell(forgetBias, lstmKernel, lstmBias, batchedData, {}, batchedH); }) .toThrowError(/Argument 'c' passed to 'basicLSTMCell' must be a Tensor/); }); it('input: h', function () { var lstmKernel = tf.randomNormal([3, 4]); var lstmBias = tf.randomNormal([4]); var forgetBias = tf.scalar(1.0); var data = tf.randomNormal([1, 2]); var batchedData = tf.concat2d([data, data], 0); // 2x2 var c = tf.randomNormal([1, 1]); var batchedC = tf.concat2d([c, c], 0); // 2x1 expect(function () { return tf.basicLSTMCell(forgetBias, lstmKernel, lstmBias, batchedData, batchedC, {}); }) .toThrowError(/Argument 'h' passed to 'basicLSTMCell' must be a Tensor/); }); }); //# sourceMappingURL=lstm_test.js.map