"use strict"; /** * @license * Copyright 2018 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ Object.defineProperty(exports, "__esModule", { value: true }); var tensor_util_1 = require("../tensor_util"); var tensor_util_env_1 = require("../tensor_util_env"); var util = require("../util"); var binary_ops_1 = require("./binary_ops"); var operation_1 = require("./operation"); var tensor_ops_1 = require("./tensor_ops"); /** * Compute the moving average of a variable. * * Without zeroDebias, the moving average operation is defined by: * `v += delta` * where * `delta = (1 - decay) * (x - v)` * * With zeroDebias (default), the `delta` term is scaled to debias the * effect of the (assumed) zero-initialization of `v`. * `delta /= (1 - decay ^ step)` * * For more details on the zero-debiasing algorithm, see: * https://arxiv.org/abs/1412.6980 * * Note that this function is completely stateless and does not keep track of * step count. The step count needs to be maintained by the caller and passed * in as `step`. * * @param v The current moving average value. * @param x New input value, must have the same shape and dtype as `v`. * @param decay The decay factor. Typical values are 0.95 and 0.99. * @param step Step count. * @param zeroDebias: Whether zeroDebias is to be performed (default: `true`). * @returns The new moving average value. */ /** @doc {heading: 'Operations', subheading: 'Moving Average'} */ function movingAverage_(v, x, decay, step, zeroDebias) { if (zeroDebias === void 0) { zeroDebias = true; } var $v = tensor_util_env_1.convertToTensor(v, 'v', 'movingAverage'); var $x = tensor_util_env_1.convertToTensor(x, 'x', 'movingAverage'); var $decay = tensor_util_env_1.convertToTensor(decay, 'decay', 'movingAverage'); tensor_util_1.assertTypesMatch($v, $x); util.assert(util.arraysEqual($v.shape, $x.shape), function () { return 'Shape mismatch in v and x'; }); var one = tensor_ops_1.scalar(1); var oneMinusDecay = one.sub($decay); var update = $x.sub($v).mul(oneMinusDecay); if (zeroDebias) { util.assert(step != null, function () { return 'When using zeroDebias: true, step is required.'; }); var $step = tensor_util_env_1.convertToTensor(step, 'step', 'movingAverage'); update = update.div(one.sub(binary_ops_1.pow($decay, $step))); } return $v.add(update); } exports.movingAverage = operation_1.op({ movingAverage_: movingAverage_ }); //# sourceMappingURL=moving_average.js.map