"use strict"; /** * @license * Copyright 2018 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ Object.defineProperty(exports, "__esModule", { value: true }); var tensor_util_env_1 = require("../tensor_util_env"); var util_1 = require("../util"); var axis_util = require("./axis_util"); var operation_1 = require("./operation"); var tensor_ops_1 = require("./tensor_ops"); /** * Computes the norm of scalar, vectors, and matrices. * This function can compute several different vector norms (the 1-norm, the * Euclidean or 2-norm, the inf-norm, and in general the p-norm for p > 0) * and matrix norms (Frobenius, 1-norm, and inf-norm). * * ```js * const x = tf.tensor1d([1, 2, 3, 4]); * * x.norm().print(); // or tf.norm(x) * ``` * * @param x The input array. * @param ord Optional. Order of the norm. Supported norm types are * following: * * | ord | norm for matrices | norm for vectors * |------------|---------------------------|--------------------- * |'euclidean' |Frobenius norm |2-norm * |'fro' |Frobenius norm | * |Infinity |max(sum(abs(x), axis=1)) |max(abs(x)) * |-Infinity |min(sum(abs(x), axis=1)) |min(abs(x)) * |1 |max(sum(abs(x), axis=0)) |sum(abs(x)) * |2 | |sum(abs(x)^2)^1/2* * * @param axis Optional. If axis is null (the default), the input is * considered a vector and a single vector norm is computed over the entire * set of values in the Tensor, i.e. norm(x, ord) is equivalent * to norm(x.reshape([-1]), ord). If axis is a integer, the input * is considered a batch of vectors, and axis determines the axis in x * over which to compute vector norms. If axis is a 2-tuple of integer it is * considered a batch of matrices and axis determines the axes in NDArray * over which to compute a matrix norm. * @param keepDims Optional. If true, the norm have the same dimensionality * as the input. */ /** @doc {heading: 'Operations', subheading: 'Matrices'} */ function norm_(x, ord, axis, keepDims) { if (ord === void 0) { ord = 'euclidean'; } if (axis === void 0) { axis = null; } if (keepDims === void 0) { keepDims = false; } x = tensor_util_env_1.convertToTensor(x, 'x', 'norm'); var norm = normImpl(x, ord, axis); var keepDimsShape = norm.shape; if (keepDims) { var axes = util_1.parseAxisParam(axis, x.shape); keepDimsShape = axis_util.expandShapeToKeepDim(norm.shape, axes); } return norm.reshape(keepDimsShape); } function normImpl(x, p, axis) { if (axis === void 0) { axis = null; } if (x.rank === 0) { return x.abs(); } // consider vector when no axis is specified if (x.rank !== 1 && axis === null) { return normImpl(x.reshape([-1]), p, axis); } // vector if (x.rank === 1 || typeof axis === 'number' || Array.isArray(axis) && axis.length === 1) { if (p === 1) { return x.abs().sum(axis); } if (p === Infinity) { return x.abs().max(axis); } if (p === -Infinity) { return x.abs().min(axis); } if (p === 'euclidean' || p === 2) { // norm(x, 2) = sum(abs(xi) ^ 2) ^ 1/2 return x.abs().pow(tensor_ops_1.scalar(2, 'int32')).sum(axis).sqrt(); } throw new Error("Error in norm: invalid ord value: " + p); } // matrix (assumption axis[0] < axis[1]) if (Array.isArray(axis) && axis.length === 2) { if (p === 1) { return x.abs().sum(axis[0]).max(axis[1] - 1); } if (p === Infinity) { return x.abs().sum(axis[1]).max(axis[0]); } if (p === -Infinity) { return x.abs().sum(axis[1]).min(axis[0]); } if (p === 'fro' || p === 'euclidean') { // norm(x) = sqrt(sum(pow(x, 2))) return x.square().sum(axis).sqrt(); } throw new Error("Error in norm: invalid ord value: " + p); } throw new Error("Error in norm: invalid axis: " + axis); } exports.norm = operation_1.op({ norm_: norm_ }); //# sourceMappingURL=norm.js.map