"use strict"; /** * @license * Copyright 2018 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ Object.defineProperty(exports, "__esModule", { value: true }); var engine_1 = require("../engine"); var tensor_util_env_1 = require("../tensor_util_env"); var util_1 = require("../util"); var array_ops_1 = require("./array_ops"); var axis_util_1 = require("./axis_util"); var binary_ops_1 = require("./binary_ops"); var compare_1 = require("./compare"); var logical_ops_1 = require("./logical_ops"); var operation_1 = require("./operation"); var segment_util_1 = require("./segment_util"); var tensor_ops_1 = require("./tensor_ops"); /** * Computes the sum along segments of a `tf.Tensor`. * * ```js * const x = tf.tensor1d([1, 2, 3, 4]); * const segmentIds = tf.tensor1d([1, 2, 0, 1], 'int32'); * const numSegments = 3; * * x.unsortedSegmentSum(segmentIds, numSegments).print() * //or tf.unsortedSegmentSum(x, segmentIds, numSegments) * ``` * @param x The `tf.Tensor` that will be summed along its segments. * @param segmentIds A `tf.Tensor1D` whose rank is equal to the rank of `x`'s * dimension along the `axis`. Maps each element of `x` to a segment. * @param numSegments The number of distinct `segmentIds`. */ /** @doc {heading: 'Operations', subheading: 'Segment'} */ function unsortedSegmentSum_(x, segmentIds, numSegments) { var $x = tensor_util_env_1.convertToTensor(x, 'x', 'unsortedSegmentSum'); var $segmentIds = tensor_util_env_1.convertToTensor(segmentIds, 'segmentIds', 'unsortedSegmentSum', 'int32'); util_1.assert(util_1.isInt(numSegments), function () { return 'numSegments must be of dtype int'; }); var gradFunc = function (dy, saved) { var $segmentIds = saved[0]; var derX = function () { return gatherDropNegatives(dy, $segmentIds); }; return { $x: derX }; }; return engine_1.ENGINE.runKernelFunc(function (backend, save) { var res = backend.unsortedSegmentSum($x, $segmentIds, numSegments); save([$segmentIds]); return res; }, { $x: $x }, gradFunc); } /** * Gather slices from tensor `x`'s axis `axis` according to `indices`. * * ```js * const x = tf.tensor1d([1, 2, 3, 4]); * const indices = tf.tensor1d([1, 3, 3], 'int32'); * * x.gather(indices).print(); * ``` * * ```js * const x = tf.tensor2d([1, 2, 3, 4], [2, 2]); * const indices = tf.tensor1d([1, 1, 0], 'int32'); * * x.gather(indices).print(); * ``` * @param x The input tensor whose slices to be gathered. * @param indices The indices of the values to extract. * @param axis The axis over which to select values. Defaults to 0. */ /** @doc {heading: 'Tensors', subheading: 'Slicing and Joining'} */ function gather_(x, indices, axis) { if (axis === void 0) { axis = 0; } var $x = tensor_util_env_1.convertToTensor(x, 'x', 'gather'); var $indices = tensor_util_env_1.convertToTensor(indices, 'indices', 'gather', 'int32'); axis = util_1.parseAxisParam(axis, $x.shape)[0]; var shapeInfo = segment_util_1.collectGatherOpShapeInfo($x, $indices, axis); var grad = function (dy, saved) { var $indices = saved[0]; var derX = function () { var paramsShape = $x.shape; var indicesSize = $indices.size; var outerShape = paramsShape.slice(0, axis); var outerDims = outerShape.length; var innerShape = paramsShape.slice(axis, paramsShape.length).slice(1); var innerDims = innerShape.length; var outerAxesIndices = arrayRange(0, outerDims); var innerAxesIndices = arrayRange(outerDims + 1, outerDims + 1 + innerDims); var valuesShape = arrayConcat([outerShape, [indicesSize], innerShape]); var values = dy.reshape(valuesShape); var reshapedIndices = $indices.reshape([indicesSize]); var transposeDims = arrayConcat([[outerDims], outerAxesIndices, innerAxesIndices]); var valuesTranspose = values.transpose(transposeDims); var paramsGrad = exports.unsortedSegmentSum(valuesTranspose, reshapedIndices, $x.shape[axis]); var invertTransposeDims = axis_util_1.getUndoAxesPermutation(transposeDims); paramsGrad = paramsGrad.transpose(invertTransposeDims); return paramsGrad; }; return { x: derX, indices: function () { return $indices; } }; }; return (engine_1.ENGINE.runKernelFunc(function (backend, save) { var res = backend.gather($x, $indices.flatten(), axis); save([$indices]); return res; }, { x: $x, indices: $indices }, grad, 'Gather', { axis: axis })) .reshape(shapeInfo.outputShape); } function arrayRange(start, stop) { var result = []; for (var i = start; i < stop; ++i) { result.push(i); } return result; } function arrayConcat(arrays) { var result = []; for (var i = 0; i < arrays.length; ++i) { for (var j = 0; j < arrays[i].length; ++j) { result.push(arrays[i][j]); } } return result; } function gatherDropNegatives(x, indices) { // Helper function for unsorted segment ops. Gathers params for // positive segment ids and gathers 0 for inputs with negative segment id. // Mirrors _GatherDropNegatives from tensorflow/python/ops/math_grad.py var zeroClippedIndices = binary_ops_1.maximum(indices, tensor_ops_1.zerosLike(indices)); var gathered = exports.gather(x, zeroClippedIndices); var isPositive = compare_1.greaterEqual(indices, tensor_ops_1.scalar(0, 'int32')); var numIters = gathered.rank - isPositive.rank; for (var i = 0; i < numIters; ++i) { isPositive = array_ops_1.expandDims(isPositive, i + 1); } isPositive = logical_ops_1.logicalAnd(isPositive, tensor_ops_1.ones(gathered.shape, 'bool')); var zeroSlice = tensor_ops_1.zerosLike(gathered); return logical_ops_1.where(isPositive, gathered, zeroSlice); } exports.gather = operation_1.op({ gather_: gather_ }); exports.unsortedSegmentSum = operation_1.op({ unsortedSegmentSum_: unsortedSegmentSum_ }); //# sourceMappingURL=segment_ops.js.map