"use strict"; /** * @license * Copyright 2018 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var _this = this; Object.defineProperty(exports, "__esModule", { value: true }); var tf = require("../index"); var jasmine_util_1 = require("../jasmine_util"); var test_util_1 = require("../test_util"); var reduce_util_1 = require("./reduce_util"); jasmine_util_1.describeWithFlags('unsortedSegmentSum', jasmine_util_1.ALL_ENVS, function () { it('tensor1D', function () { return __awaiter(_this, void 0, void 0, function () { var t, segmentIds, numSegments, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: t = tf.tensor1d([1, 2, 3, 4]); segmentIds = tf.tensor1d([0, 2, 0, 1], 'int32'); numSegments = 3; res = tf.unsortedSegmentSum(t, segmentIds, numSegments); expect(res.shape).toEqual([numSegments]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), [4, 4, 2]]); return [2 /*return*/]; } }); }); }); it('tensor2D', function () { return __awaiter(_this, void 0, void 0, function () { var t, segmentIds, numSegments, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: t = tf.tensor2d([1, 2, 3, 4], [2, 2]); segmentIds = tf.tensor1d([0, 0], 'int32'); numSegments = 2; res = tf.unsortedSegmentSum(t, segmentIds, numSegments); expect(res.shape).toEqual([numSegments, 2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), [4, 6, 0, 0]]); return [2 /*return*/]; } }); }); }); it('tensor3D', function () { return __awaiter(_this, void 0, void 0, function () { var t, segmentIds, numSegments, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: t = tf.tensor3d([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [3, 2, 2]); segmentIds = tf.tensor1d([2, 1, 2], 'int32'); numSegments = 3; res = tf.unsortedSegmentSum(t, segmentIds, numSegments); expect(res.shape).toEqual([numSegments, 2, 2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, 0, 0, 0, 5, 6, 7, 8, 10, 12, 14, 16]]); return [2 /*return*/]; } }); }); }); it('N > than parallelization threshold, tensor1D', function () { return __awaiter(_this, void 0, void 0, function () { var n, values, numSegments, segmentIdValues, vals, i, t, segmentIds, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: n = reduce_util_1.PARALLELIZE_THRESHOLD * 2; values = new Float32Array(n); numSegments = 5; segmentIdValues = new Float32Array(n); vals = new Float32Array(numSegments); for (i = 0; i < n; i++) { values[i] = i; segmentIdValues[i] = i % numSegments; vals[i % numSegments] += i; } t = tf.tensor1d(values); segmentIds = tf.tensor1d(segmentIdValues, 'int32'); res = tf.unsortedSegmentSum(t, segmentIds, numSegments); expect(res.shape).toEqual([numSegments]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), vals]); return [2 /*return*/]; } }); }); }); it('ignores negative segmentIds', function () { return __awaiter(_this, void 0, void 0, function () { var t, segmentIds, numSegments, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: t = tf.tensor1d([1, 2, 3, 4]); segmentIds = tf.tensor1d([0, 2, -1, 1], 'int32'); numSegments = 3; res = tf.unsortedSegmentSum(t, segmentIds, numSegments); expect(res.shape).toEqual([numSegments]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 4, 2]]); return [2 /*return*/]; } }); }); }); it('gradient ignores negative segmentIds', function () { return __awaiter(_this, void 0, void 0, function () { var t, segmentIds, numSegments, dy, gradient, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: t = tf.tensor1d([1, 2, 3, 4]); segmentIds = tf.tensor1d([0, 2, -1, 1], 'int32'); numSegments = 3; dy = tf.tensor1d([11, 2, 7]); gradient = tf.grad(function (a) { return tf.unsortedSegmentSum(a, segmentIds, numSegments); })(t, dy); expect(gradient.shape).toEqual(t.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradient.data()]; case 1: _a.apply(void 0, [_b.sent(), [11, 7, 0, 2]]); return [2 /*return*/]; } }); }); }); it('tensor1D gradient', function () { return __awaiter(_this, void 0, void 0, function () { var t, segmentIds, numSegments, dy, gradient, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: t = tf.tensor1d([1, 2, 3, 4]); segmentIds = tf.tensor1d([0, 2, 0, 1], 'int32'); numSegments = 3; dy = tf.tensor1d([11, 2, 7]); gradient = tf.grad(function (a) { return tf.unsortedSegmentSum(a, segmentIds, numSegments); })(t, dy); expect(gradient.shape).toEqual(t.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradient.data()]; case 1: _a.apply(void 0, [_b.sent(), [11, 7, 11, 2]]); return [2 /*return*/]; } }); }); }); it('gradient with clones', function () { return __awaiter(_this, void 0, void 0, function () { var t, segmentIds, numSegments, dy, gradient, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: t = tf.tensor1d([1, 2, 3, 4]); segmentIds = tf.tensor1d([0, 2, 0, 1], 'int32'); numSegments = 3; dy = tf.tensor1d([11, 2, 7]); gradient = tf.grad(function (a) { return tf.unsortedSegmentSum(a.clone(), segmentIds.clone(), numSegments) .clone(); })(t, dy); expect(gradient.shape).toEqual(t.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradient.data()]; case 1: _a.apply(void 0, [_b.sent(), [11, 7, 11, 2]]); return [2 /*return*/]; } }); }); }); it('tensor2D gradient', function () { return __awaiter(_this, void 0, void 0, function () { var t, segmentIds, numSegments, dy, gradient, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: t = tf.tensor2d([1, 2, 3, 4], [2, 2]); segmentIds = tf.tensor1d([0, 0], 'int32'); numSegments = 2; dy = tf.tensor2d([11, 2, 4, 5], [2, 2]); gradient = tf.grad(function (a) { return tf.unsortedSegmentSum(a, segmentIds, numSegments); })(t, dy); expect(gradient.shape).toEqual(t.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradient.data()]; case 1: _a.apply(void 0, [_b.sent(), [11, 2, 11, 2]]); return [2 /*return*/]; } }); }); }); it('tensor3D gradient', function () { return __awaiter(_this, void 0, void 0, function () { var t, segmentIds, numSegments, dy, gradient, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: t = tf.tensor3d([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [3, 2, 2]); segmentIds = tf.tensor1d([2, 1, 2], 'int32'); numSegments = 3; dy = tf.tensor3d([11, 2, 4, 5, 17, 31, 1, 0, -1, 14, 3, 28], [3, 2, 2]); gradient = tf.grad(function (a) { return tf.unsortedSegmentSum(a, segmentIds, numSegments); })(t, dy); expect(gradient.shape).toEqual(t.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, gradient.data()]; case 1: _a.apply(void 0, [_b.sent(), [-1, 14, 3, 28, 17, 31, 1, 0, -1, 14, 3, 28]]); return [2 /*return*/]; } }); }); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var x, segmentIds, numSegments, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = [1, 2, 3, 4]; segmentIds = [0, 2, 0, 1]; numSegments = 3; res = tf.unsortedSegmentSum(x, segmentIds, numSegments); expect(res.shape).toEqual([3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), [4, 4, 2]]); return [2 /*return*/]; } }); }); }); it('accepts a tensor-like object chained', function () { return __awaiter(_this, void 0, void 0, function () { var x, segmentIds, numSegments, res, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.tensor1d([1, 2, 3, 4]); segmentIds = [0, 2, 0, 1]; numSegments = 3; res = x.unsortedSegmentSum(segmentIds, numSegments); expect(res.shape).toEqual([3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, res.data()]; case 1: _a.apply(void 0, [_b.sent(), [4, 4, 2]]); return [2 /*return*/]; } }); }); }); }); //# sourceMappingURL=segment_ops_test.js.map