"use strict"; /** * @license * Copyright 2017 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var _this = this; Object.defineProperty(exports, "__esModule", { value: true }); var tf = require("../index"); var jasmine_util_1 = require("../jasmine_util"); var test_util_1 = require("../test_util"); jasmine_util_1.describeWithFlags('softmax', jasmine_util_1.ALL_ENVS, function () { it('regular test', function () { return __awaiter(_this, void 0, void 0, function () { var y, _a, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: y = tf.softmax(tf.tensor1d([2, 1, 3])); _a = test_util_1.expectArraysClose; return [4 /*yield*/, y.data()]; case 1: _a.apply(void 0, [_c.sent(), [0.24472847, 0.09003057, 0.66524095]]); _b = test_util_1.expectArraysClose; return [4 /*yield*/, y.sum().data()]; case 2: _b.apply(void 0, [_c.sent(), 1]); return [2 /*return*/]; } }); }); }); it('overflow', function () { return __awaiter(_this, void 0, void 0, function () { var y, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: y = tf.softmax(tf.tensor1d([100, 100])); _a = test_util_1.expectArraysClose; return [4 /*yield*/, y.data()]; case 1: _a.apply(void 0, [_b.sent(), [0.5, 0.5]]); return [2 /*return*/]; } }); }); }); it('underflow', function () { return __awaiter(_this, void 0, void 0, function () { var y, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: y = tf.softmax(tf.tensor1d([-100, -100])); _a = test_util_1.expectArraysClose; return [4 /*yield*/, y.data()]; case 1: _a.apply(void 0, [_b.sent(), [0.5, 0.5]]); return [2 /*return*/]; } }); }); }); it('Huge difference between probabilities', function () { return __awaiter(_this, void 0, void 0, function () { var y, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: y = tf.softmax(tf.tensor1d([-1000, +1000])); _a = test_util_1.expectArraysClose; return [4 /*yield*/, y.data()]; case 1: _a.apply(void 0, [_b.sent(), [0, 1]]); return [2 /*return*/]; } }); }); }); it('Propagates NaNs', function () { return __awaiter(_this, void 0, void 0, function () { var a, y, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([2, 1, NaN]); y = tf.softmax(a); _a = test_util_1.expectArraysClose; return [4 /*yield*/, y.data()]; case 1: _a.apply(void 0, [_b.sent(), [NaN, NaN, NaN]]); return [2 /*return*/]; } }); }); }); it('2D, dim=1', function () { return __awaiter(_this, void 0, void 0, function () { var y, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: y = tf.softmax(tf.tensor2d([[2, 1, 3], [1, 3, 2]], [2, 3]), 1); expected = [ 0.24472847, 0.09003057, 0.66524095, 0.09003057, 0.66524095, 0.24472847 ]; expect(y.rank).toBe(2); _a = test_util_1.expectArraysClose; return [4 /*yield*/, y.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('2D, implicit dim=1', function () { return __awaiter(_this, void 0, void 0, function () { var y, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: y = tf.softmax(tf.tensor2d([[2, 1, 3], [1, 3, 2]], [2, 3])); expected = [ 0.24472847, 0.09003057, 0.66524095, 0.09003057, 0.66524095, 0.24472847 ]; expect(y.rank).toBe(2); _a = test_util_1.expectArraysClose; return [4 /*yield*/, y.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('2D, dim=0 throws error', function () { var f = function () { tf.softmax(tf.tensor2d([[2, 1, 3], [1, 3, 2]], [2, 3]), 0); }; expect(f).toThrowError(); }); it('1D gradient', function () { return __awaiter(_this, void 0, void 0, function () { var x, y, dy, dx, totalSum, dyVals, sumVals, yVals, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.tensor1d([10, 0, -1]); y = tf.softmax(x); dy = tf.tensor1d([1, 2, 3]); dx = tf.grad(function (x) { return x.softmax(); })(x, dy); totalSum = tf.sum(tf.mul(dy, y)); return [4 /*yield*/, dy.array()]; case 1: dyVals = _b.sent(); return [4 /*yield*/, totalSum.array()]; case 2: sumVals = _b.sent(); return [4 /*yield*/, y.array()]; case 3: yVals = _b.sent(); expect(dx.shape).toEqual(x.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, dx.data()]; case 4: _a.apply(void 0, [_b.sent(), [ (dyVals[0] - sumVals) * yVals[0], (dyVals[1] - sumVals) * yVals[1], (dyVals[2] - sumVals) * yVals[2], ]]); return [2 /*return*/]; } }); }); }); it('gradient with clones', function () { var x = tf.tensor1d([10, 0, -1]); var dx = tf.grad(function (x) { return x.clone().softmax().clone(); })(x); expect(dx.shape).toEqual(x.shape); expect(dx.dtype).toBe('float32'); }); it('2D gradient', function () { return __awaiter(_this, void 0, void 0, function () { var x, y, dy, dx, axis, totalSum, dyVals, sumVals, yVals, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.tensor2d([10, 0, -1, 5, 4, 3], [2, 3]); y = tf.softmax(x); dy = tf.tensor2d([3, 2, 1, 1, 2, 3], [2, 3]); dx = tf.grad(function (x) { return x.softmax(); })(x, dy); axis = -1; totalSum = tf.sum(tf.mulStrict(dy, y), axis); return [4 /*yield*/, dy.array()]; case 1: dyVals = _b.sent(); return [4 /*yield*/, totalSum.array()]; case 2: sumVals = _b.sent(); return [4 /*yield*/, y.array()]; case 3: yVals = _b.sent(); expect(dx.shape).toEqual(x.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, dx.data()]; case 4: _a.apply(void 0, [_b.sent(), [ (dyVals[0][0] - sumVals[0]) * yVals[0][0], (dyVals[0][1] - sumVals[0]) * yVals[0][1], (dyVals[0][2] - sumVals[0]) * yVals[0][2], (dyVals[1][0] - sumVals[1]) * yVals[1][0], (dyVals[1][1] - sumVals[1]) * yVals[1][1], (dyVals[1][2] - sumVals[1]) * yVals[1][2] ]]); return [2 /*return*/]; } }); }); }); it('throws when passed a non-tensor', function () { expect(function () { return tf.softmax({}); }) .toThrowError(/Argument 'logits' passed to 'softmax' must be a Tensor/); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var y, _a, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: y = tf.softmax([2, 1, 3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, y.data()]; case 1: _a.apply(void 0, [_c.sent(), [0.24472847, 0.09003057, 0.66524095]]); _b = test_util_1.expectArraysClose; return [4 /*yield*/, y.sum().data()]; case 2: _b.apply(void 0, [_c.sent(), 1]); return [2 /*return*/]; } }); }); }); }); jasmine_util_1.describeWithFlags('logSoftmax', jasmine_util_1.ALL_ENVS, function () { it('regular test', function () { return __awaiter(_this, void 0, void 0, function () { var y, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: y = tf.logSoftmax(tf.tensor1d([2, 1, 3])); _a = test_util_1.expectArraysClose; return [4 /*yield*/, y.data()]; case 1: _a.apply(void 0, [_b.sent(), [-1.407606, -2.4076061, -0.407606]]); return [2 /*return*/]; } }); }); }); it('Huge difference', function () { return __awaiter(_this, void 0, void 0, function () { var y, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: y = tf.logSoftmax(tf.tensor1d([-1000, +1000])); _a = test_util_1.expectArraysClose; return [4 /*yield*/, y.data()]; case 1: _a.apply(void 0, [_b.sent(), [-2000, 0]]); return [2 /*return*/]; } }); }); }); it('Propagates NaNs', function () { return __awaiter(_this, void 0, void 0, function () { var a, y, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: a = tf.tensor1d([2, 1, NaN]); y = tf.logSoftmax(a); _a = test_util_1.expectArraysClose; return [4 /*yield*/, y.data()]; case 1: _a.apply(void 0, [_b.sent(), [NaN, NaN, NaN]]); return [2 /*return*/]; } }); }); }); it('2D, axis=1', function () { return __awaiter(_this, void 0, void 0, function () { var y, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: y = tf.logSoftmax(tf.tensor2d([[2, 1, 3], [1, 3, 2]], [2, 3]), 1); expected = [-1.407606, -2.4076061, -0.407606, -2.4076061, -0.4076061, -1.4076061]; expect(y.rank).toBe(2); _a = test_util_1.expectArraysClose; return [4 /*yield*/, y.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('2D, implicit axis=1', function () { return __awaiter(_this, void 0, void 0, function () { var y, expected, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: y = tf.logSoftmax(tf.tensor2d([[2, 1, 3], [1, 3, 2]], [2, 3])); expected = [-1.407606, -2.4076061, -0.407606, -2.4076061, -0.4076061, -1.4076061]; expect(y.rank).toBe(2); _a = test_util_1.expectArraysClose; return [4 /*yield*/, y.data()]; case 1: _a.apply(void 0, [_b.sent(), expected]); return [2 /*return*/]; } }); }); }); it('1D gradient', function () { return __awaiter(_this, void 0, void 0, function () { var x, dy, dx, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: x = tf.tensor1d([1, 2, 10]); dy = tf.tensor1d([1, 2, 3]); dx = tf.grad(function (x) { return x.logSoftmax(); })(x, dy); expect(dx.shape).toEqual(x.shape); _a = test_util_1.expectArraysClose; return [4 /*yield*/, dx.data()]; case 1: _a.apply(void 0, [_b.sent(), [0.9992599, 1.9979881, -2.9972477]]); return [2 /*return*/]; } }); }); }); it('2D, axis=0 throws error', function () { var f = function () { tf.logSoftmax(tf.tensor2d([[2, 1, 3], [1, 3, 2]], [2, 3]), 0); }; expect(f).toThrowError(); }); it('throws when passed a non-tensor', function () { expect(function () { return tf.logSoftmax({}); }) .toThrowError(/Argument 'logits' passed to 'logSoftmax' must be a Tensor/); }); it('accepts a tensor-like object', function () { return __awaiter(_this, void 0, void 0, function () { var y, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: y = tf.logSoftmax([2, 1, 3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, y.data()]; case 1: _a.apply(void 0, [_b.sent(), [-1.407606, -2.4076061, -0.407606]]); return [2 /*return*/]; } }); }); }); }); //# sourceMappingURL=softmax_test.js.map