"use strict"; /** * @license * Copyright 2020 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ Object.defineProperty(exports, "__esModule", { value: true }); var engine_1 = require("../engine"); var kernel_names_1 = require("../kernel_names"); var tensor_util_1 = require("../tensor_util"); var tensor_util_env_1 = require("../tensor_util_env"); var broadcast_util_1 = require("./broadcast_util"); var operation_1 = require("./operation"); var tensor_ops_1 = require("./tensor_ops"); /** * Returns (a - b) * (a - b) element-wise. * Supports broadcasting. * * We also expose `tf.squaredDifferenceStrict` which has the same signature as * this op and asserts that `a` and `b` are the same shape (does not * broadcast). * * ```js * const a = tf.tensor1d([1, 4, 3, 16]); * const b = tf.tensor1d([1, 2, 9, 4]); * * a.squaredDifference(b).print(); // or tf.squaredDifference(a, b) * ``` * * ```js * // Broadcast squared difference a with b. * const a = tf.tensor1d([2, 4, 6, 8]); * const b = tf.scalar(5); * * a.squaredDifference(b).print(); // or tf.squaredDifference(a, b) * ``` * * @param a The first tensor. * @param b The second tensor. Must have the same type as `a`. */ /** @doc {heading: 'Operations', subheading: 'Arithmetic'} */ function squaredDifference_(a, b) { var _a; var $a = tensor_util_env_1.convertToTensor(a, 'a', 'squaredDifference'); var $b = tensor_util_env_1.convertToTensor(b, 'b', 'squaredDifference'); _a = tensor_util_1.makeTypesMatch($a, $b), $a = _a[0], $b = _a[1]; broadcast_util_1.assertAndGetBroadcastShape($a.shape, $b.shape); var der = function (dy, saved) { var $a = saved[0], $b = saved[1]; var two = tensor_ops_1.scalar(2); var derA = function () { return dy.mul($a.sub($b).mul(two)); }; var derB = function () { return dy.mul($b.sub($a).mul(two)); }; return { a: derA, b: derB }; }; var forward = function (backend, save) { var res = backend.squaredDifference($a, $b); save([$a, $b]); return res; }; var inputs = { a: $a, b: $b }; var attrs = {}; var inputsToSave = [$a, $b]; var outputToSave = []; return engine_1.ENGINE.runKernelFunc(forward, inputs, der, kernel_names_1.SquaredDifference, attrs, inputsToSave, outputToSave); } exports.squaredDifference = operation_1.op({ squaredDifference_: squaredDifference_ }); //# sourceMappingURL=squared_difference.js.map