"use strict"; /** * @license * Copyright 2017 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var _this = this; Object.defineProperty(exports, "__esModule", { value: true }); var engine_1 = require("./engine"); var tf = require("./index"); var jasmine_util_1 = require("./jasmine_util"); var test_util_1 = require("./test_util"); describe('Backend registration', function () { beforeAll(function () { // Silences backend registration warnings. spyOn(console, 'warn'); }); var registeredBackends = []; beforeEach(function () { // Registering a backend changes global state (engine), so we wrap // registration to automatically remove registered backend at the end // of each test. spyOn(tf, 'registerBackend') .and.callFake(function (name, factory, priority) { registeredBackends.push(name); return engine_1.ENGINE.registerBackend(name, factory, priority); }); engine_1.ENGINE.reset(); }); afterEach(function () { // Remove all registered backends at the end of each test. registeredBackends.forEach(function (name) { if (tf.findBackendFactory(name) != null) { tf.removeBackend(name); } }); registeredBackends = []; }); it('removeBackend disposes the backend and removes the factory', function () { var backend; var factory = function () { var newBackend = new jasmine_util_1.TestKernelBackend(); if (backend == null) { backend = newBackend; spyOn(backend, 'dispose').and.callThrough(); } return newBackend; }; tf.registerBackend('test-backend', factory); expect(tf.findBackend('test-backend') != null).toBe(true); expect(tf.findBackend('test-backend')).toBe(backend); expect(tf.findBackendFactory('test-backend')).toBe(factory); tf.removeBackend('test-backend'); expect(tf.findBackend('test-backend') == null).toBe(true); expect(tf.findBackend('test-backend')).toBe(null); expect(backend.dispose.calls.count()).toBe(1); expect(tf.findBackendFactory('test-backend')).toBe(null); }); it('findBackend initializes the backend', function () { var backend; var factory = function () { var newBackend = new jasmine_util_1.TestKernelBackend(); if (backend == null) { backend = newBackend; } return newBackend; }; tf.registerBackend('custom-cpu', factory); expect(tf.findBackend('custom-cpu') != null).toBe(true); expect(tf.findBackend('custom-cpu')).toBe(backend); expect(tf.findBackendFactory('custom-cpu')).toBe(factory); }); it('custom backend registration', function () { var backend; var priority = 103; tf.registerBackend('custom-cpu', function () { var newBackend = new jasmine_util_1.TestKernelBackend(); if (backend == null) { backend = newBackend; } return newBackend; }, priority); expect(tf.backend() != null).toBe(true); expect(tf.backend()).toBe(backend); }); it('high priority backend registration fails, falls back', function () { var lowPriorityBackend; var lowPriority = 103; var highPriority = 104; tf.registerBackend('custom-low-priority', function () { lowPriorityBackend = new jasmine_util_1.TestKernelBackend(); return lowPriorityBackend; }, lowPriority); tf.registerBackend('custom-high-priority', function () { throw new Error("High priority backend fails"); }, highPriority); expect(tf.backend() != null).toBe(true); expect(tf.backend()).toBe(lowPriorityBackend); expect(tf.getBackend()).toBe('custom-low-priority'); }); it('low priority and high priority backends, setBackend low priority', function () { var lowPriorityBackend; var highPriorityBackend; var lowPriority = 103; var highPriority = 104; tf.registerBackend('custom-low-priority', function () { lowPriorityBackend = new jasmine_util_1.TestKernelBackend(); return lowPriorityBackend; }, lowPriority); tf.registerBackend('custom-high-priority', function () { highPriorityBackend = new jasmine_util_1.TestKernelBackend(); return highPriorityBackend; }, highPriority); expect(tf.backend() != null).toBe(true); expect(tf.backend()).toBe(highPriorityBackend); expect(tf.getBackend()).toBe('custom-high-priority'); tf.setBackend('custom-low-priority'); expect(tf.backend() != null).toBe(true); expect(tf.backend()).toBe(lowPriorityBackend); expect(tf.getBackend()).toBe('custom-low-priority'); }); it('default custom background null', function () { expect(tf.findBackend('custom')).toBeNull(); }); it('allow custom backend', function () { var backend = new jasmine_util_1.TestKernelBackend(); var success = tf.registerBackend('custom', function () { return backend; }); expect(success).toBeTruthy(); expect(tf.findBackend('custom')).toEqual(backend); }); it('sync backend with await ready works', function () { return __awaiter(_this, void 0, void 0, function () { var testBackend; return __generator(this, function (_a) { switch (_a.label) { case 0: testBackend = new jasmine_util_1.TestKernelBackend(); tf.registerBackend('sync', function () { return testBackend; }); tf.setBackend('sync'); expect(tf.getBackend()).toEqual('sync'); return [4 /*yield*/, tf.ready()]; case 1: _a.sent(); expect(tf.backend()).toEqual(testBackend); return [2 /*return*/]; } }); }); }); it('sync backend without await ready works', function () { return __awaiter(_this, void 0, void 0, function () { var testBackend; return __generator(this, function (_a) { testBackend = new jasmine_util_1.TestKernelBackend(); tf.registerBackend('sync', function () { return testBackend; }); tf.setBackend('sync'); expect(tf.getBackend()).toEqual('sync'); expect(tf.backend()).toEqual(testBackend); return [2 /*return*/]; }); }); }); it('async backend with await ready works', function () { return __awaiter(_this, void 0, void 0, function () { var testBackend; var _this = this; return __generator(this, function (_a) { switch (_a.label) { case 0: testBackend = new jasmine_util_1.TestKernelBackend(); tf.registerBackend('async', function () { return __awaiter(_this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, tf.nextFrame()]; case 1: _a.sent(); return [2 /*return*/, testBackend]; } }); }); }); tf.setBackend('async'); expect(tf.getBackend()).toEqual('async'); return [4 /*yield*/, tf.ready()]; case 1: _a.sent(); expect(tf.backend()).toEqual(testBackend); return [2 /*return*/]; } }); }); }); it('async backend without await ready does not work', function () { return __awaiter(_this, void 0, void 0, function () { var testBackend; var _this = this; return __generator(this, function (_a) { testBackend = new jasmine_util_1.TestKernelBackend(); tf.registerBackend('async', function () { return __awaiter(_this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, tf.nextFrame()]; case 1: _a.sent(); return [2 /*return*/, testBackend]; } }); }); }); tf.setBackend('async'); expect(tf.getBackend()).toEqual('async'); expect(function () { return tf.backend(); }) .toThrowError(/Backend 'async' has not yet been initialized./); return [2 /*return*/]; }); }); }); it('tf.square() fails if user does not await ready on async backend', function () { return __awaiter(_this, void 0, void 0, function () { var _this = this; return __generator(this, function (_a) { tf.registerBackend('async', function () { return __awaiter(_this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, tf.nextFrame()]; case 1: _a.sent(); return [2 /*return*/, new jasmine_util_1.TestKernelBackend()]; } }); }); }); tf.setBackend('async'); expect(function () { return tf.square(2); }) .toThrowError(/Backend 'async' has not yet been initialized/); return [2 /*return*/]; }); }); }); it('tf.square() works when user awaits ready on async backend', function () { return __awaiter(_this, void 0, void 0, function () { var _this = this; return __generator(this, function (_a) { switch (_a.label) { case 0: tf.registerBackend('async', function () { return __awaiter(_this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, tf.nextFrame()]; case 1: _a.sent(); return [2 /*return*/, new jasmine_util_1.TestKernelBackend()]; } }); }); }); tf.setBackend('async'); return [4 /*yield*/, tf.ready()]; case 1: _a.sent(); expect(function () { return tf.square(2); }).toThrowError(/'write' not yet implemented/); return [2 /*return*/]; } }); }); }); it('Registering async2 (higher priority) fails, async1 becomes active', function () { return __awaiter(_this, void 0, void 0, function () { var testBackend; var _this = this; return __generator(this, function (_a) { switch (_a.label) { case 0: testBackend = new jasmine_util_1.TestKernelBackend(); tf.registerBackend('async1', function () { return __awaiter(_this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, tf.nextFrame()]; case 1: _a.sent(); return [2 /*return*/, testBackend]; } }); }); }, 100 /* priority */); tf.registerBackend('async2', function () { return __awaiter(_this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, tf.nextFrame()]; case 1: _a.sent(); throw new Error('failed to create async2'); } }); }); }, 101 /* priority */); // Await for the library to find the best backend that succesfully // initializes. return [4 /*yield*/, tf.ready()]; case 1: // Await for the library to find the best backend that succesfully // initializes. _a.sent(); expect(tf.backend()).toEqual(testBackend); expect(tf.getBackend()).toBe('async1'); return [2 /*return*/]; } }); }); }); it('Registering sync as higher priority and async as lower priority', function () { return __awaiter(_this, void 0, void 0, function () { var testBackend; var _this = this; return __generator(this, function (_a) { testBackend = new jasmine_util_1.TestKernelBackend(); tf.registerBackend('sync', function () { return testBackend; }, 101 /* priority */); tf.registerBackend('async', function () { return __awaiter(_this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, tf.nextFrame()]; case 1: _a.sent(); return [2 /*return*/, new jasmine_util_1.TestKernelBackend()]; } }); }); }, 100 /* priority */); // No need to await for ready() since the highest priority one is sync. expect(tf.backend()).toEqual(testBackend); expect(tf.getBackend()).toBe('sync'); return [2 /*return*/]; }); }); }); it('async as higher priority and sync as lower priority with await ready', function () { return __awaiter(_this, void 0, void 0, function () { var testBackend; var _this = this; return __generator(this, function (_a) { switch (_a.label) { case 0: testBackend = new jasmine_util_1.TestKernelBackend(); tf.registerBackend('async', function () { return __awaiter(_this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, tf.nextFrame()]; case 1: _a.sent(); return [2 /*return*/, testBackend]; } }); }); }, 101 /* priority */); tf.registerBackend('sync', function () { return new jasmine_util_1.TestKernelBackend(); }, 100 /* priority */); return [4 /*yield*/, tf.ready()]; case 1: _a.sent(); expect(tf.backend()).toEqual(testBackend); expect(tf.getBackend()).toBe('async'); return [2 /*return*/]; } }); }); }); it('async as higher priority and sync as lower priority w/o await ready', function () { return __awaiter(_this, void 0, void 0, function () { var testBackend; var _this = this; return __generator(this, function (_a) { testBackend = new jasmine_util_1.TestKernelBackend(); tf.registerBackend('async', function () { return __awaiter(_this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, tf.nextFrame()]; case 1: _a.sent(); return [2 /*return*/, testBackend]; } }); }); }, 101 /* priority */); tf.registerBackend('sync', function () { return new jasmine_util_1.TestKernelBackend(); }, 100 /* priority */); expect(function () { return tf.backend(); }) .toThrowError(/The highest priority backend 'async' has not yet been/); return [2 /*return*/]; }); }); }); it('Registering and setting a backend that fails to register', function () { return __awaiter(_this, void 0, void 0, function () { var success, _a; var _this = this; return __generator(this, function (_b) { switch (_b.label) { case 0: tf.registerBackend('async', function () { return __awaiter(_this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, tf.nextFrame()]; case 1: _a.sent(); throw new Error('failed to create async'); } }); }); }); success = tf.setBackend('async'); expect(tf.getBackend()).toBe('async'); expect(function () { return tf.backend(); }) .toThrowError(/Backend 'async' has not yet been initialized/); _a = expect; return [4 /*yield*/, success]; case 1: _a.apply(void 0, [_b.sent()]).toBe(false); return [2 /*return*/]; } }); }); }); }); jasmine_util_1.describeWithFlags('memory', jasmine_util_1.ALL_ENVS, function () { it('Sum(float)', function () { return __awaiter(_this, void 0, void 0, function () { var sum, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: expect(tf.memory().numTensors).toBe(0); expect(tf.memory().numBytes).toBe(0); sum = tf.tidy(function () { var a = tf.tensor1d([1, 2, 3, 4]); expect(tf.memory().numTensors).toBe(1); expect(tf.memory().numBytes).toBe(4 * 4); return a.sum(); }); expect(tf.memory().numTensors).toBe(1); expect(tf.memory().numBytes).toBe(4); _a = test_util_1.expectArraysClose; return [4 /*yield*/, sum.data()]; case 1: _a.apply(void 0, [_b.sent(), [1 + 2 + 3 + 4]]); return [2 /*return*/]; } }); }); }); it('Sum(bool)', function () { return __awaiter(_this, void 0, void 0, function () { var sum, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: sum = tf.tidy(function () { var a = tf.tensor1d([true, true, false, true], 'bool'); expect(tf.memory().numTensors).toBe(1); expect(tf.memory().numBytes).toBe(4); return a.sum(); }); expect(tf.memory().numTensors).toBe(1); expect(tf.memory().numBytes).toBe(4); expect(sum.dtype).toBe('int32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, sum.data()]; case 1: _a.apply(void 0, [_b.sent(), [1 + 1 + 0 + 1]]); return [2 /*return*/]; } }); }); }); it('Sum(int32)', function () { return __awaiter(_this, void 0, void 0, function () { var sum, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: sum = tf.tidy(function () { var a = tf.tensor1d([1, 1, 0, 1], 'int32'); expect(tf.memory().numTensors).toBe(1); expect(tf.memory().numBytes).toBe(4 * 4); return a.sum(); }); expect(tf.memory().numTensors).toBe(1); expect(tf.memory().numBytes).toBe(4); expect(sum.dtype).toBe('int32'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, sum.data()]; case 1: _a.apply(void 0, [_b.sent(), [1 + 1 + 0 + 1]]); return [2 /*return*/]; } }); }); }); it('string tensor', function () { var a = tf.tensor([['a', 'bb'], ['c', 'd']]); expect(tf.memory().numTensors).toBe(1); expect(tf.memory().numBytes).toBe(5); // 5 letters, each 1 byte in utf8. a.dispose(); expect(tf.memory().numTensors).toBe(0); expect(tf.memory().numBytes).toBe(0); }); it('unreliable is true for string tensors', function () { tf.tensor('a'); var mem = tf.memory(); expect(mem.unreliable).toBe(true); var expectedReason = 'Memory usage by string tensors is approximate ' + '(2 bytes per character)'; expect(mem.reasons.indexOf(expectedReason) >= 0).toBe(true); }); }); jasmine_util_1.describeWithFlags('profile', jasmine_util_1.ALL_ENVS, function () { it('squaring', function () { return __awaiter(_this, void 0, void 0, function () { var profile, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: return [4 /*yield*/, tf.profile(function () { var x = tf.tensor1d([1, 2, 3]); var x2 = x.square(); x2.dispose(); x2 = x.square(); x2.dispose(); return x; })]; case 1: profile = _b.sent(); result = profile.result; expect(profile.newBytes).toBe(12); expect(profile.peakBytes).toBe(24); expect(profile.newTensors).toBe(1); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 2: _a.apply(void 0, [_b.sent(), [1, 2, 3]]); expect(profile.kernels).toEqual([ { 'name': 'Square', 'bytesAdded': 12, 'totalBytesSnapshot': 24, 'tensorsAdded': 1, 'totalTensorsSnapshot': 2, 'inputShapes': [[3]], 'outputShapes': [[3]] }, { 'name': 'Square', 'bytesAdded': 12, 'totalBytesSnapshot': 24, 'tensorsAdded': 1, 'totalTensorsSnapshot': 2, 'inputShapes': [[3]], 'outputShapes': [[3]] } ]); return [2 /*return*/]; } }); }); }); it('squaring without disposing', function () { return __awaiter(_this, void 0, void 0, function () { var profile, result, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: return [4 /*yield*/, tf.profile(function () { var x = tf.tensor1d([1, 2, 3]); var x2 = x.square(); return x2; })]; case 1: profile = _b.sent(); result = profile.result; expect(profile.newBytes).toBe(24); expect(profile.peakBytes).toBe(24); expect(profile.newTensors).toBe(2); _a = test_util_1.expectArraysClose; return [4 /*yield*/, result.data()]; case 2: _a.apply(void 0, [_b.sent(), [1, 4, 9]]); expect(profile.kernels).toEqual([{ 'name': 'Square', 'bytesAdded': 12, 'totalBytesSnapshot': 24, 'tensorsAdded': 1, 'totalTensorsSnapshot': 2, 'inputShapes': [[3]], 'outputShapes': [[3]] }]); return [2 /*return*/]; } }); }); }); }); jasmine_util_1.describeWithFlags('disposeVariables', jasmine_util_1.ALL_ENVS, function () { it('reuse same name variable', function () { tf.tensor1d([1, 2, 3]).variable(true, 'v1'); tf.tensor1d([1, 2, 3]).variable(true, 'v2'); expect(function () { tf.tensor1d([1, 2, 3]).variable(true, 'v1'); }).toThrowError(); tf.disposeVariables(); tf.tensor1d([1, 2, 3]).variable(true, 'v1'); tf.tensor1d([1, 2, 3]).variable(true, 'v2'); }); }); /** * The following test constraints to the CPU environment because it needs a * concrete backend to exist. This test will work for any backend, but currently * this is the simplest backend to test against. */ jasmine_util_1.describeWithFlags('Switching cpu backends', { predicate: function (testEnv) { return testEnv.backendName === 'cpu'; } }, function () { beforeEach(function () { tf.registerBackend('cpu1', tf.findBackendFactory('cpu')); tf.registerBackend('cpu2', tf.findBackendFactory('cpu')); }); afterEach(function () { tf.removeBackend('cpu1'); tf.removeBackend('cpu2'); }); it('Move data from cpu1 to cpu2 backend', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, _a, _b, _c, _d; return __generator(this, function (_e) { switch (_e.label) { case 0: tf.setBackend('cpu1'); a = tf.scalar(5); tf.setBackend('cpu2'); b = tf.scalar(3); expect(tf.memory().numDataBuffers).toBe(2); expect(tf.memory().numTensors).toBe(2); expect(tf.memory().numBytes).toBe(8); // Make sure you can read both tensors. _a = test_util_1.expectArraysClose; return [4 /*yield*/, a.data()]; case 1: // Make sure you can read both tensors. _a.apply(void 0, [_e.sent(), [5]]); _b = test_util_1.expectArraysClose; return [4 /*yield*/, b.data()]; case 2: _b.apply(void 0, [_e.sent(), [3]]); // Switch back to cpu1. tf.setBackend('cpu1'); // Again make sure you can read both tensors. _c = test_util_1.expectArraysClose; return [4 /*yield*/, a.data()]; case 3: // Again make sure you can read both tensors. _c.apply(void 0, [_e.sent(), [5]]); _d = test_util_1.expectArraysClose; return [4 /*yield*/, b.data()]; case 4: _d.apply(void 0, [_e.sent(), [3]]); tf.dispose([a, b]); expect(tf.memory().numDataBuffers).toBe(0); expect(tf.memory().numTensors).toBe(0); expect(tf.memory().numBytes).toBe(0); return [2 /*return*/]; } }); }); }); it('can execute op with data from mixed backends', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, _a, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: tf.setBackend('cpu1'); a = tf.scalar(5); tf.setBackend('cpu2'); b = tf.scalar(3); // Verify that ops can execute with mixed backend data. engine_1.ENGINE.startScope(); tf.setBackend('cpu1'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, tf.add(a, b).data()]; case 1: _a.apply(void 0, [_c.sent(), [8]]); tf.setBackend('cpu2'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, tf.add(a, b).data()]; case 2: _b.apply(void 0, [_c.sent(), [8]]); engine_1.ENGINE.endScope(); expect(tf.memory().numTensors).toBe(2); expect(tf.memory().numDataBuffers).toBe(2); tf.dispose([a, b]); expect(tf.memory().numTensors).toBe(0); expect(tf.memory().numDataBuffers).toBe(0); return [2 /*return*/]; } }); }); }); }); /** * The following unit test is a special integration-style test that assumes * things about CPU & WebGL backends being registered. This tests doesn't live * in the backend directory because it is testing engine rather than * backend-specific details but needs a real backend to exist. This test will * fail if the CPU backends is not registered. This is intentional, we should * have coverage for when these backends are enabled and ensure they work with * the engine. */ jasmine_util_1.describeWithFlags('Switching WebGL + CPU backends', { predicate: function (testEnv) { return testEnv.backendName === 'webgl' && engine_1.ENGINE.backendNames().indexOf('webgl') !== -1 && engine_1.ENGINE.backendNames().indexOf('cpu') !== -1; } }, function () { beforeEach(function () { tf.registerBackend('webgl1', tf.findBackendFactory('webgl')); tf.registerBackend('webgl2', tf.findBackendFactory('webgl')); tf.registerBackend('cpu1', tf.findBackendFactory('cpu')); }); afterEach(function () { tf.removeBackend('webgl1'); tf.removeBackend('webgl2'); tf.removeBackend('cpu1'); }); it('can execute op with data from mixed backends', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, c, _a, _b, _c; return __generator(this, function (_d) { switch (_d.label) { case 0: tf.setBackend('webgl1'); a = tf.scalar(5); tf.setBackend('webgl2'); b = tf.scalar(3); tf.setBackend('cpu1'); c = tf.scalar(2); // Verify that ops can execute with mixed backend data. engine_1.ENGINE.startScope(); tf.setBackend('webgl1'); _a = test_util_1.expectArraysClose; return [4 /*yield*/, tf.addN([a, b, c]).data()]; case 1: _a.apply(void 0, [_d.sent(), [10]]); tf.setBackend('webgl2'); _b = test_util_1.expectArraysClose; return [4 /*yield*/, tf.addN([a, b, c]).data()]; case 2: _b.apply(void 0, [_d.sent(), [10]]); tf.setBackend('cpu1'); _c = test_util_1.expectArraysClose; return [4 /*yield*/, tf.addN([a, b, c]).data()]; case 3: _c.apply(void 0, [_d.sent(), [10]]); engine_1.ENGINE.endScope(); expect(tf.memory().numTensors).toBe(3); expect(tf.memory().numDataBuffers).toBe(3); tf.dispose([a, b, c]); expect(tf.memory().numTensors).toBe(0); expect(tf.memory().numDataBuffers).toBe(0); return [2 /*return*/]; } }); }); }); it('fromPixels with mixed backends works', function () { return __awaiter(_this, void 0, void 0, function () { var a, b, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: tf.setBackend('webgl1'); a = tf.browser.fromPixels(new ImageData(new Uint8ClampedArray([1, 2, 3, 4]), 1, 1)); tf.setBackend('webgl2'); b = tf.browser.fromPixels(new ImageData(new Uint8ClampedArray([5, 6, 7, 8]), 1, 1)); _a = test_util_1.expectArraysClose; return [4 /*yield*/, tf.add(a, b).data()]; case 1: _a.apply(void 0, [_b.sent(), [6, 8, 10]]); return [2 /*return*/]; } }); }); }); it('single tidy multiple backends', function () { var kernelFunc = tf.getKernel('Square', 'webgl').kernelFunc; tf.registerKernel({ kernelName: 'Square', backendName: 'webgl1', kernelFunc: kernelFunc }); tf.registerKernel({ kernelName: 'Square', backendName: 'webgl2', kernelFunc: kernelFunc }); expect(tf.memory().numTensors).toBe(0); tf.tidy(function () { tf.setBackend('webgl1'); var a = tf.scalar(1); a.square(); // Uploads to GPU. tf.setBackend('webgl2'); var b = tf.scalar(1); b.square(); // Uploads to GPU. expect(tf.memory().numTensors).toBe(4); }); expect(tf.memory().numTensors).toBe(0); tf.unregisterKernel('Square', 'webgl1'); tf.unregisterKernel('Square', 'webgl2'); }); }); jasmine_util_1.describeWithFlags('Detects memory leaks in kernels', jasmine_util_1.ALL_ENVS, function () { var backendName = 'test-mem'; var kernelName = 'MyKernel'; var kernelNameComplex = 'Kernel-complex'; it('Detects memory leak in a kernel', function () { var dataIdsCount = 0; tf.registerBackend(backendName, function () { return { id: 1, dispose: function () { return null; }, disposeData: function (dataId) { return null; }, numDataIds: function () { return dataIdsCount; } }; }); var kernelWithMemLeak = function () { dataIdsCount += 2; return { dataId: {}, shape: [], dtype: 'float32' }; }; tf.registerKernel({ kernelName: kernelName, backendName: backendName, kernelFunc: kernelWithMemLeak }); tf.setBackend(backendName); expect(function () { return tf.engine().runKernel(kernelName, {}, {}); }) .toThrowError(/Backend 'test-mem' has an internal memory leak \(1 data ids\)/); tf.removeBackend(backendName); tf.unregisterKernel(kernelName, backendName); }); it('No mem leak in a kernel with multiple outputs', function () { var dataIdsCount = 0; tf.registerBackend(backendName, function () { return { id: 1, dispose: function () { return null; }, disposeData: function (dataId) { return null; }, numDataIds: function () { return dataIdsCount; } }; }); tf.setBackend(backendName); var kernelWith3Outputs = function () { dataIdsCount += 3; var t = { dataId: {}, shape: [], dtype: 'float32' }; return [t, t, t]; }; tf.registerKernel({ kernelName: kernelName, backendName: backendName, kernelFunc: kernelWith3Outputs }); var res = tf.engine().runKernel(kernelName, {}, {}); expect(Array.isArray(res)).toBe(true); expect(res.length).toBe(3); var kernelWithComplexOutputs = function () { dataIdsCount += 3; return { dataId: {}, shape: [], dtype: 'complex64' }; }; tf.registerKernel({ kernelName: kernelNameComplex, backendName: backendName, kernelFunc: kernelWithComplexOutputs }); var res2 = tf.engine().runKernel(kernelNameComplex, {}, {}); expect(res2.shape).toEqual([]); expect(res2.dtype).toEqual('complex64'); tf.removeBackend(backendName); tf.unregisterKernel(kernelName, backendName); tf.unregisterKernel(kernelNameComplex, backendName); }); }); // NOTE: This describe is purposefully not a describeWithFlags so that we // test tensor allocation where no scopes have been created. describe('Memory allocation outside a test scope', function () { it('constructing a tensor works', function () { return __awaiter(_this, void 0, void 0, function () { var backendName, a, _a; var _this = this; return __generator(this, function (_b) { switch (_b.label) { case 0: backendName = 'test-backend'; tf.registerBackend(backendName, function () { var storedValues = null; return { id: 1, floatPrecision: function () { return 32; }, write: function (values, shape, dtype) { var dataId = {}; storedValues = values; return dataId; }, read: function (dataId) { return __awaiter(_this, void 0, void 0, function () { return __generator(this, function (_a) { return [2 /*return*/, storedValues]; }); }); }, dispose: function () { return null; }, disposeData: function (dataId) { return null; }, }; }); tf.setBackend(backendName); a = tf.tensor1d([1, 2, 3]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, a.data()]; case 1: _a.apply(void 0, [_b.sent(), [1, 2, 3]]); a.dispose(); tf.removeBackend(backendName); return [2 /*return*/]; } }); }); }); }); //# sourceMappingURL=engine_test.js.map