"use strict"; /** * @license * Copyright 2019 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var _this = this; Object.defineProperty(exports, "__esModule", { value: true }); var tf = require("./index"); var jasmine_util_1 = require("./jasmine_util"); var test_util_1 = require("./test_util"); jasmine_util_1.describeWithFlags('kernel_registry', jasmine_util_1.ALL_ENVS, function () { it('register a kernel and call it', function () { var called = false; tf.registerKernel({ kernelName: 'MyKernel', backendName: tf.getBackend(), kernelFunc: function (_a) { var inputs = _a.inputs, attrs = _a.attrs; expect(attrs.a).toBe(5); expect(inputs.x.shape).toEqual([2, 2]); expect(inputs.x.dtype).toBe('float32'); called = true; return { dtype: 'float32', shape: [3, 3], dataId: {} }; } }); var inputs = { x: tf.zeros([2, 2]) }; var attrs = { a: 5 }; var res = tf.engine().runKernel('MyKernel', inputs, attrs); expect(called).toBe(true); expect(res.dtype).toBe('float32'); expect(res.shape).toEqual([3, 3]); tf.unregisterKernel('MyKernel', tf.getBackend()); }); it('errors when running non-existent kernel', function () { var inputs = {}; var attrs = {}; expect(function () { return tf.engine().runKernel('DoesNotExist', inputs, attrs); }) .toThrowError(); }); it('errors when registering the same kernel twice', function () { tf.registerKernel({ kernelName: 'MyKernel', backendName: tf.getBackend(), kernelFunc: function () { return null; } }); expect(function () { return tf.registerKernel({ kernelName: 'MyKernel', backendName: tf.getBackend(), kernelFunc: function () { return null; } }); }).toThrowError(); tf.unregisterKernel('MyKernel', tf.getBackend()); }); it('register same kernel on two different backends', function () { tf.registerBackend('backend1', function () { return { id: 1, dispose: function () { return null; }, disposeData: function (dataId) { return null; }, numDataIds: function () { return 0; } }; }); tf.registerBackend('backend2', function () { return { id: 2, dispose: function () { return null; }, disposeData: function (dataId) { return null; }, numDataIds: function () { return 0; } }; }); var lastStorageId = -1; var kernelFunc = function (_a) { var backend = _a.backend; lastStorageId = backend.id; return { dataId: {}, shape: [], dtype: 'float32' }; }; tf.registerKernel({ kernelName: 'MyKernel', backendName: 'backend1', kernelFunc: kernelFunc }); tf.registerKernel({ kernelName: 'MyKernel', backendName: 'backend2', kernelFunc: kernelFunc }); // No kernel has been executed yet. expect(lastStorageId).toBe(-1); // Kernel was executed on the first backend. tf.setBackend('backend1'); tf.engine().runKernel('MyKernel', {}, {}); expect(lastStorageId).toBe(1); // Kernel was executed on the second backend. tf.setBackend('backend2'); tf.engine().runKernel('MyKernel', {}, {}); expect(lastStorageId).toBe(2); tf.removeBackend('backend1'); tf.removeBackend('backend2'); tf.unregisterKernel('MyKernel', 'backend1'); tf.unregisterKernel('MyKernel', 'backend2'); }); it('register kernel with setup and dispose functions', function () { var backendName = 'custom-backend'; var kernelName = 'MyKernel'; var customBackend = { dispose: function () { return null; }, disposeData: function (dataId) { return null; }, numDataIds: function () { return 0; } }; tf.registerBackend(backendName, function () { return customBackend; }); var kernelFunc = function () { return { dataId: {}, shape: [], dtype: 'float32' }; }; var setupCalled = false; var setupFunc = function (backend) { expect(backend).toBe(customBackend); setupCalled = true; }; var disposeCalled = false; var disposeFunc = function (backend) { expect(backend).toBe(customBackend); disposeCalled = true; }; tf.registerKernel({ kernelName: kernelName, backendName: backendName, kernelFunc: kernelFunc, setupFunc: setupFunc, disposeFunc: disposeFunc }); expect(setupCalled).toBe(false); expect(disposeCalled).toBe(false); tf.setBackend(backendName); expect(setupCalled).toBe(true); expect(disposeCalled).toBe(false); // Kernel was executed on the first backend. tf.engine().runKernel(kernelName, {}, {}); tf.removeBackend(backendName); expect(setupCalled).toBe(true); expect(disposeCalled).toBe(true); tf.unregisterKernel(kernelName, backendName); }); }); jasmine_util_1.describeWithFlags('gradient registry', jasmine_util_1.ALL_ENVS, function () { it('register a kernel with gradient and call it', function () { return __awaiter(_this, void 0, void 0, function () { var kernelWasCalled, gradientWasCalled, kernelName, x, gradFunc, dx, _a; return __generator(this, function (_b) { switch (_b.label) { case 0: kernelWasCalled = false; gradientWasCalled = false; kernelName = 'MyKernel'; x = tf.zeros([2, 2]); tf.registerKernel({ kernelName: kernelName, backendName: tf.getBackend(), kernelFunc: function () { kernelWasCalled = true; return { dtype: 'float32', shape: [3, 3], dataId: {} }; } }); tf.registerGradient({ kernelName: kernelName, gradFunc: function (dy, saved) { // Make sure saved input (x) was passed to the gradient function. expect(saved[0].dataId).toEqual(x.dataId); // Make sure dy matches the shape of the output. expect(dy.shape).toEqual([3, 3]); gradientWasCalled = true; return { x: function () { return tf.fill([2, 2], 3); } }; }, }); gradFunc = tf.grad(function (x) { return tf.engine().runKernel(kernelName, { x: x }, {} /* attrs */, [x] /* inputsToSave */); }); dx = gradFunc(x); expect(kernelWasCalled).toBe(true); expect(gradientWasCalled).toBe(true); expect(dx.dtype).toBe('float32'); expect(dx.shape).toEqual([2, 2]); _a = test_util_1.expectArraysClose; return [4 /*yield*/, dx.data()]; case 1: _a.apply(void 0, [_b.sent(), [3, 3, 3, 3]]); tf.unregisterKernel(kernelName, tf.getBackend()); tf.unregisterGradient(kernelName); return [2 /*return*/]; } }); }); }); it('errors when running non-existent gradient', function () { var kernelName = 'MyKernel'; var x = tf.zeros([2, 2]); tf.registerKernel({ kernelName: kernelName, backendName: tf.getBackend(), kernelFunc: function () { return ({ dtype: 'float32', shape: [3, 3], dataId: {} }); } }); var gradFunc = tf.grad(function (x) { return tf.engine().runKernel(kernelName, { x: x }, {} /* attrs */, [x] /* inputsToSave */); }); expect(function () { return gradFunc(x); }) .toThrowError(/gradient function not found for MyKernel/); tf.unregisterKernel(kernelName, tf.getBackend()); }); it('warning when registering the same gradient twice', function () { var kernelName = 'MyKernel'; tf.registerGradient({ kernelName: kernelName, gradFunc: function () { return null; } }); spyOn(console, 'warn').and.callFake(function (msg) { expect(msg).toBe('Overriding the gradient for \'MyKernel\''); }); tf.registerGradient({ kernelName: kernelName, gradFunc: function () { return null; } }); tf.unregisterGradient(kernelName); }); }); //# sourceMappingURL=kernel_registry_test.js.map