"use strict"; /** * @license * Copyright 2018 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ Object.defineProperty(exports, "__esModule", { value: true }); var engine_1 = require("../engine"); var tensor_util_1 = require("../tensor_util"); var tensor_util_env_1 = require("../tensor_util_env"); var util_1 = require("../util"); var broadcast_util_1 = require("./broadcast_util"); var operation_1 = require("./operation"); var tensor_ops_1 = require("./tensor_ops"); /** * Returns the truth value of (a != b) element-wise. Supports broadcasting. * * We also expose `tf.notEqualStrict` which has the same signature as this op * and asserts that `a` and `b` are the same shape (does not broadcast). * * ```js * const a = tf.tensor1d([1, 2, 3]); * const b = tf.tensor1d([0, 2, 3]); * * a.notEqual(b).print(); * ``` * @param a The first input tensor. * @param b The second input tensor. Must have the same dtype as `a`. */ /** @doc {heading: 'Operations', subheading: 'Logical'} */ function notEqual_(a, b) { var _a; var $a = tensor_util_env_1.convertToTensor(a, 'a', 'notEqual'); var $b = tensor_util_env_1.convertToTensor(b, 'b', 'notEqual'); _a = tensor_util_1.makeTypesMatch($a, $b), $a = _a[0], $b = _a[1]; broadcast_util_1.assertAndGetBroadcastShape($a.shape, $b.shape); return engine_1.ENGINE.runKernelFunc(function (backend) { return backend.notEqual($a, $b); }, { a: $a, b: $b }, null /* grad */, 'NotEqual'); } /** * Strict version of `tf.notEqual` that forces `a` and `b` to be of the same * shape. * * @param a The first input tensor. * @param b The second input tensor. Must have the same shape and dtype as * `a`. */ function notEqualStrict_(a, b) { var $a = tensor_util_env_1.convertToTensor(a, 'a', 'notEqualStrict'); var $b = tensor_util_env_1.convertToTensor(b, 'b', 'notEqualStrict'); util_1.assertShapesMatch($a.shape, $b.shape, 'Error in notEqualStrict: '); return $a.notEqual($b); } /** * Returns the truth value of (a < b) element-wise. Supports broadcasting. * * We also expose `tf.lessStrict` which has the same signature as this op and * asserts that `a` and `b` are the same shape (does not broadcast). * * ```js * const a = tf.tensor1d([1, 2, 3]); * const b = tf.tensor1d([2, 2, 2]); * * a.less(b).print(); * ``` * @param a The first input tensor. * @param b The second input tensor. Must have the same dtype as `a`. */ /** @doc {heading: 'Operations', subheading: 'Logical'} */ function less_(a, b) { var _a; var $a = tensor_util_env_1.convertToTensor(a, 'a', 'less'); var $b = tensor_util_env_1.convertToTensor(b, 'b', 'less'); _a = tensor_util_1.makeTypesMatch($a, $b), $a = _a[0], $b = _a[1]; broadcast_util_1.assertAndGetBroadcastShape($a.shape, $b.shape); return engine_1.ENGINE.runKernelFunc(function (backend) { return backend.less($a, $b); }, { a: $a, b: $b }, null /* grad */, 'Less'); } /** * Strict version of `tf.less` that forces `a` and `b` to be of the same * shape. * * @param a The first input tensor. * @param b The second input tensor. Must have the same shape and dtype as * `a`. */ function lessStrict_(a, b) { var $a = tensor_util_env_1.convertToTensor(a, 'a', 'lessStrict'); var $b = tensor_util_env_1.convertToTensor(b, 'b', 'lessStrict'); util_1.assertShapesMatch($a.shape, $b.shape, 'Error in lessStrict: '); return $a.less($b); } /** * Returns the truth value of (a == b) element-wise. Supports broadcasting. * * We also expose `tf.equalStrict` which has the same signature as this op * and asserts that `a` and `b` are the same shape (does not broadcast). * * ```js * const a = tf.tensor1d([1, 2, 3]); * const b = tf.tensor1d([2, 2, 2]); * * a.equal(b).print(); * ``` * * @param a The first input tensor. * @param b The second input tensor. Must have the same dtype as `a`. */ /** @doc {heading: 'Operations', subheading: 'Logical'} */ function equal_(a, b) { var _a; var $a = tensor_util_env_1.convertToTensor(a, 'a', 'equal'); var $b = tensor_util_env_1.convertToTensor(b, 'b', 'equal'); _a = tensor_util_1.makeTypesMatch($a, $b), $a = _a[0], $b = _a[1]; broadcast_util_1.assertAndGetBroadcastShape($a.shape, $b.shape); return engine_1.ENGINE.runKernelFunc(function (backend) { return backend.equal($a, $b); }, { $a: $a, $b: $b }); } function equalStrict_(a, b) { var $a = tensor_util_env_1.convertToTensor(a, 'a', 'equalStrict'); var $b = tensor_util_env_1.convertToTensor(b, 'b', 'equalStrict'); util_1.assertShapesMatch($a.shape, $b.shape, 'Error in equalStrict: '); return $a.equal($b); } /** * Returns the truth value of (a <= b) element-wise. Supports broadcasting. * * We also expose `tf.lessEqualStrict` which has the same signature as this op * and asserts that `a` and `b` are the same shape (does not broadcast). * * ```js * const a = tf.tensor1d([1, 2, 3]); * const b = tf.tensor1d([2, 2, 2]); * * a.lessEqual(b).print(); * ``` * * @param a The first input tensor. * @param b The second input tensor. Must have the same dtype as `a`. */ /** @doc {heading: 'Operations', subheading: 'Logical'} */ function lessEqual_(a, b) { var _a; var $a = tensor_util_env_1.convertToTensor(a, 'a', 'lessEqual'); var $b = tensor_util_env_1.convertToTensor(b, 'b', 'lessEqual'); _a = tensor_util_1.makeTypesMatch($a, $b), $a = _a[0], $b = _a[1]; broadcast_util_1.assertAndGetBroadcastShape($a.shape, $b.shape); return engine_1.ENGINE.runKernelFunc(function (backend, save) { var res = backend.lessEqual($a, $b); save([$a, $b]); return res; }, { a: $a, b: $b }, null /* grad */, 'LessEqual'); } function lessEqualStrict_(a, b) { var $a = tensor_util_env_1.convertToTensor(a, 'a', 'lessEqualStrict'); var $b = tensor_util_env_1.convertToTensor(b, 'b', 'lessEqualStrict'); util_1.assertShapesMatch($a.shape, $b.shape, 'Error in lessEqualStrict: '); return $a.lessEqual($b); } /** * Returns the truth value of (a > b) element-wise. Supports broadcasting. * * We also expose `tf.greaterStrict` which has the same signature as this * op and asserts that `a` and `b` are the same shape (does not broadcast). * * ```js * const a = tf.tensor1d([1, 2, 3]); * const b = tf.tensor1d([2, 2, 2]); * * a.greater(b).print(); * ``` * * @param a The first input tensor. * @param b The second input tensor. Must have the same dtype as `a`. */ /** @doc {heading: 'Operations', subheading: 'Logical'} */ function greater_(a, b) { var _a; var $a = tensor_util_env_1.convertToTensor(a, 'a', 'greater'); var $b = tensor_util_env_1.convertToTensor(b, 'b', 'greater'); _a = tensor_util_1.makeTypesMatch($a, $b), $a = _a[0], $b = _a[1]; broadcast_util_1.assertAndGetBroadcastShape($a.shape, $b.shape); return engine_1.ENGINE.runKernelFunc(function (backend) { return backend.greater($a, $b); }, { a: $a, b: $b }, null /* grad */, 'Greater'); } function greaterStrict_(a, b) { var $a = tensor_util_env_1.convertToTensor(a, 'a', 'greaterStrict'); var $b = tensor_util_env_1.convertToTensor(b, 'b', 'greaterStrict'); util_1.assertShapesMatch($a.shape, $b.shape, 'Error in greaterStrict: '); return $a.greater($b); } /** * Returns the truth value of (a >= b) element-wise. Supports broadcasting. * * We also expose `tf.greaterEqualStrict` which has the same signature as this * op and asserts that `a` and `b` are the same shape (does not broadcast). * * ```js * const a = tf.tensor1d([1, 2, 3]); * const b = tf.tensor1d([2, 2, 2]); * * a.greaterEqual(b).print(); * ``` * * @param a The first input tensor. * @param b The second input tensor. Must have the same dtype as `a`. */ /** @doc {heading: 'Operations', subheading: 'Logical'} */ function greaterEqual_(a, b) { var _a; var $a = tensor_util_env_1.convertToTensor(a, 'a', 'greaterEqual'); var $b = tensor_util_env_1.convertToTensor(b, 'b', 'greaterEqual'); _a = tensor_util_1.makeTypesMatch($a, $b), $a = _a[0], $b = _a[1]; broadcast_util_1.assertAndGetBroadcastShape($a.shape, $b.shape); var grad = function (dy, saved) { var $a = saved[0], $b = saved[1]; return { a: function () { return tensor_ops_1.zerosLike($a); }, b: function () { return tensor_ops_1.zerosLike($b); } }; }; return engine_1.ENGINE.runKernelFunc(function (backend, save) { var res = backend.greaterEqual($a, $b); save([$a, $b]); return res; }, { a: $a, b: $b }, grad, 'GreaterEqual'); } function greaterEqualStrict_(a, b) { var $a = tensor_util_env_1.convertToTensor(a, 'a', 'greaterEqualStrict'); var $b = tensor_util_env_1.convertToTensor(b, 'b', 'greaterEqualStrict'); util_1.assertShapesMatch($a.shape, $b.shape, 'Error in greaterEqualStrict: '); return $a.greaterEqual($b); } exports.equal = operation_1.op({ equal_: equal_ }); exports.equalStrict = operation_1.op({ equalStrict_: equalStrict_ }); exports.greater = operation_1.op({ greater_: greater_ }); exports.greaterEqual = operation_1.op({ greaterEqual_: greaterEqual_ }); exports.greaterEqualStrict = operation_1.op({ greaterEqualStrict_: greaterEqualStrict_ }); exports.greaterStrict = operation_1.op({ greaterStrict_: greaterStrict_ }); exports.less = operation_1.op({ less_: less_ }); exports.lessEqual = operation_1.op({ lessEqual_: lessEqual_ }); exports.lessEqualStrict = operation_1.op({ lessEqualStrict_: lessEqualStrict_ }); exports.lessStrict = operation_1.op({ lessStrict_: lessStrict_ }); exports.notEqual = operation_1.op({ notEqual_: notEqual_ }); exports.notEqualStrict = operation_1.op({ notEqualStrict_: notEqualStrict_ }); //# sourceMappingURL=compare.js.map