"use strict"; /** * @license * Copyright 2018 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ Object.defineProperty(exports, "__esModule", { value: true }); var tensor_util_env_1 = require("../tensor_util_env"); var util = require("../util"); var array_ops_1 = require("./array_ops"); var operation_1 = require("./operation"); /** * Computes the confusion matrix from true labels and predicted labels. * * ```js * const labels = tf.tensor1d([0, 1, 2, 1, 0], 'int32'); * const predictions = tf.tensor1d([0, 2, 2, 1, 0], 'int32'); * const numClasses = 3; * const out = tf.math.confusionMatrix(labels, predictions, numClasses); * out.print(); * // Expected output matrix: * // [[2, 0, 0], * // [0, 1, 1], * // [0, 0, 1]] * ``` * * @param labels The target labels, assumed to be 0-based integers * for the classes. The shape is `[numExamples]`, where * `numExamples` is the number of examples included. * @param predictions The predicted classes, assumed to be * 0-based integers for the classes. Must have the same shape as `labels`. * @param numClasses Number of all classes, as an integer. * Its value must be larger than the largest element in `labels` and * `predictions`. * @returns The confusion matrix as a int32-type 2D tensor. The value at * row `r` and column `c` is the number of times examples of actual class * `r` were predicted as class `c`. */ /** @doc {heading: 'Operations', subheading: 'Evaluation'} */ function confusionMatrix_(labels, predictions, numClasses) { var $labels = tensor_util_env_1.convertToTensor(labels, 'labels', 'confusionMatrix'); var $predictions = tensor_util_env_1.convertToTensor(predictions, 'predictions', 'confusionMatrix'); util.assert(numClasses == null || numClasses > 0 && Number.isInteger(numClasses), function () { return "If provided, numClasses must be a positive integer, " + ("but got " + numClasses); }); util.assert($labels.rank === 1, function () { return "Expected the rank of labels to be 1, but got " + $labels.rank; }); util.assert($predictions.rank === 1, function () { return "Expected the rank of predictions to be 1, " + ("but got " + $predictions.rank); }); util.assert($labels.shape[0] === $predictions.shape[0], function () { return "Mismatch in the number of examples: " + ($labels.shape[0] + " vs. " + $predictions.shape[0] + ". ") + "Labels and predictions should have the same number of elements."; }); util.assert(numClasses > 0 && Number.isInteger(numClasses), function () { return "numClasses is required to be a positive integer, but got " + ("" + numClasses); }); // TODO(cais): In the future, if oneHot supports tensors inputs for // `numClasses`, `confusionMatrix` can make `numClasses` optional. var oneHotLabels = array_ops_1.oneHot($labels.asType('int32'), numClasses); var oneHotPredictions = array_ops_1.oneHot($predictions.asType('int32'), numClasses); return oneHotLabels.transpose().matMul(oneHotPredictions).asType('int32'); } exports.confusionMatrix_ = confusionMatrix_; exports.confusionMatrix = operation_1.op({ confusionMatrix_: confusionMatrix_ }); //# sourceMappingURL=confusion_matrix.js.map